Методические указания по выполнению работы

Первая задача посвящена использованию солнечной энергии на электростанции башенного типа с использованием гелиостатов, отправляющих солнечные лучи на приемник, в котором, в конечном счете, получают перегретый водяной пар для работы в паровой турбине.

Энергия, полученная приемником от солнца через гелиостаты (Вт), может быть определена по уравнению [2, гл. 4-6; 2, гл. 6]:

Q = Rг·Апр·Fг Нг ·п, (1.1)

где Нг - облученность зеркала гелиостата в Вт/м2 (для типичных условий Hг= 600 Вт/м2);

Fг- площадь поверхности гелиостата, м2;

п - количество гелиостатов;

Rг - коэффициент отражения зеркала концетратора, Rг =0,7÷0,8;

Aпр - коэффициент поглощения приемника, Апр < 1.

Площадь поверхности приемника может быть определена, если известна энергетическая освещенность на нем Нпр Вт/ мг,

Fпр=Q/Hпр (1.2) (1.2)

В общем случае температура на поверхности приемника может достигать

tпов= 1160 К, что позволяет нагреть теплоноситель до 700 оС. Потери тепла за счет излучения в теплоприемнике можно вычислить по закону Стефана-Больцмана:

qлуч = εпр·Co·(T/100)4, Вт/м2, (1.3)

где T - абсолютная температура теплоносителя, К;

епр - степень черноты серого тела приемника;

Co - коэффициент излучения абсолютно черного чела, Вт / (м2·K4)

Вторая задача посвящена перспективам использования перепада температур поверхностных и глубинных вод океана для получения электроэнергии на ОТЭС, работающей по известному циклу Ренкина. В качестве рабочего тела предполагается использование легкокипящих веществ (аммиак, фреон). Вследствие небольших перепадов температур (∆T=15÷26 oC) термический КПД установки, работающей по циклу Карно, составляет всего 5-9 %. Реальный КПД установки, работающей по циклу Ренкина, будет вдвое меньше [л.6, гл.2]. В результате для получения доли относительно небольших мощностей на ОТЭС требуются большие расходы "теплой" и "холодной" воды и, следовательно, огромные диаметры подводящих и отводящих трубопроводов.

Если считать теплообменники (испаритель и конденсатор) идеальными, то тепловую мощность, полученную от теплой воды Qo (Вт) можно представить как

Q0=p·V·Cp·∆T, (2.1)

где р - плотность морской воды, кг/м3;

Ср - массовая теплоемкость морской воды, Дж/(кг · К);

V - объемный расход воды, м3/с;

∆T = T1-T2 - разность температур поверхностных и глубинных вод

(температурный перепад цикла) в °С или К.

В идеальном теоретическом цикле Карно механическая мощность N0 (Вт) может быть определена как

N0tk·Qo, (2.2)

или с учетом (2.1) и выражения для термического КПД цикла Карно ηtk:

N0=p·Cp·V·(∆T)2/T1 (2.3)

Третья задача посвящена тепловому потенциалу геотермальной энергии, сосредоточенной в естественных водоносных горизонтах на глубине z (км) от земной поверхности. Обычно толщина водоносного слоя h (км) меньше глубины его залегания. Слой имеет пористую структуру - скальные породы имеют поры, заполненные водой (пористость оценивается коэффициентом α). Средняя плотность твердых пород земной коры ргр =2700 кг/м3, а коэффициент теплопроводности λгр =2 Вт/(м·К). Изменение температуры грунта по направлению к земной поверхности характеризуется температурным градиентом (dT/dz), измеряемым в °С/км или К/км.

Наиболее распространены на земном шаре районы с нормальным температурным градиентом (менее 40 °С/км) с плотностью исходящих в направлении поверхности тепловых потоков ≈ 0,06 Вт/м2 (например Калининградская область). Экономическая целесообразность извлечения тепла из недр Земли здесь маловероятна.

В полутермальных районах температурный градиент равен 40-80 °С/км (например, Северный Кавказ). Здесь целесообразно использовать тепло недр для отопления, в теплицах, в бальнеологии.

В гипертермальных районах (вблизи границ платформ земной коры) градиент более 80 °С/км. Здесь целесообразно строить ГеоТЭС (2, гл. 15; 3, гл. 6; 7, 8).

При известном температурном градиенте можно определить температуру водоносного пласта перед началом его эксплуатации:

Tг=To+(dT/dz)·z, (3.1)

где Тo - температура на поверхности Земли, К (° С).

В расчетной практике характеристики геотермальной энергетики обычно относят к 1 км 2 поверхности F.

Теплоемкость пласта Спл (Дж/К) можно определить по уравнению

Cпл=[α·ρв·Cв+(1- α)·ρгр·Cгр]·h·F, (3.2)

где рв и Св- соответственно плотность и изобарная удельная теплоемкость

воды;

ргр и Сгр - плотность и удельная теплоемкость грунта (пород пласта); обычно ргр =820-850 Дж/(кг·К).

Если задать минимально допустимую температуру, при которой можно использовать тепловую энергию пласта Т1 (К), то можно оценить его тепловой потенциал к началу эксплуатации (Дж):

E0=Cпл·(T2-T1) (3.3)

Постоянную времени пласта τ0 (возможное время его использования, лет) в случае отвода тепловой энергии путем закачки в него воды с объемным расходом V (м3/с) можно определить по уравнению:

τ0=Cпл/(V·ρв·Св) (3.4)

Считают, что тепловой потенциал пласта во время его разработки изменяется по экспоненциальному закону:

E=E0·e -(τ/τo) (3.5)

где τ - число лет с начала эксплуатации;

е - основание натуральных логарифмов.

Тепловая мощность геотермального пласта в момент времени τ (лет с начала разработки) в Вт (МВт):

(3.6)

Четвертая задача посвящена проблеме использования биотоплива для преобразования его энергии в тепловую или электрическую в сельскохозяйственных предприятиях и на фермах. Одним из видов биотоплива являются отходы жизнедеятельности животных (навоз), при переработке которых (сбраживание) в биогазогенераторах можно получать биогаз, в состав которого (70 % по объему) входит метан; теплота сгорания метана при НФУ Qнp =28 МДж/м3. Время полного сбраживания субстрата, состоящего из воды, навоза и ферментов, в зависимости от температуры изменятся от 8 до 30 сут. Плотность сухого материала в субстрате составляет рсух ≈50 кг/m3. Выход биогаза от I кг сухого материала в сутки составляет примерно νг =0,2 ÷ 0,4 м3/кг. Скорость подачи сухого сбраживаемого материала в биогазогенератор (метантенк) W зависит от вида животных и их количества на ферме [1, гл. 11].

Если обозначить через т0 (кг/сут) подачу сухого сбраживаемого материала, то суточный объем жидкой массы, поступающей в биогазогенерагор (м3/сут) можно определить по формуле:

Vсут=m0сух (4.1)

Объем биогазогенератора, необходимого для фермы (м3):

Vб=τ·Vсут (4.2)

Суточный выход биогаза:

Vг=m0·ν г (4.3)

Тепловая мощность устройства, использующего биогаз (МДж/сут) или (Вт),

N=η·Qнр·Vг·ƒм (4.4)

где fм - объемная доля метана в биогазе;

η - КПД горелочного устройства (≈ 60%).

Пятая задача посвящена определению емкости водяного аккумулятора тепловой энергии, предназначенного для отопления, горячего водоснабжения и кондиционирования воздуха в жилом доме. Источником тепловой энергии может быть, например, солнечная энергия, улавливаемая солнечными панелями па крыше дома. Циркулирующая в панелях вода после нагрева направляется в бак - аккумулятор, а оттуда насосом в отопительные батареи и к водоразборным кранам горячего водоснабжения. Могут быть и более сложные, комплексные системы аккумулирования тепла с использованием засыпки из гравия и др. [ 2, гл. 5, 16; 3, гл. 6].

Необходимый объем бака - аккумулятора V (м3) для воды можно определить по известному уравнению для изобарного процесса, если знать: суточную потребность в тепловой энергии для дома Q (ГДж); температуру горячей воды, получаемой в солнечных панелях t1 0С; наименьшую температуру в баке t2 °C, при которой еще возможно действие отопительной системы:

Q=ρ·V·Cр·(t1-t2) (5.1)

где р - плотность морской воды, кг/м3

Ср - удельная массовая теплоемкость воды при р = const в Дж/(кг · К)

Шестая задача посвящена оценке энергетического потенциала Эпот (кВт·ч) приливной энергии океанического бассейна, имеющего площадь F км2, если известна средняя величина приливной волны Rср м. В научной литературе существует несколько уравнений, позволяющих определить приливный потенциал бассейна. Одно из них предложено отечественным ученым Л. Б. Бернштейном [лб. гл. I]:

Эпот =1,97·106·R2ср·F (6.1)

Седьмая задача посвящена оценке изменения мощности малой ГЭС при колебаниях расхода воды и напора. Известно, что мощность ГЭС (Вт) можно определить по простому уравнению [13]:

N=9,81·V·H·η (7.1)

где V - объемный расход воды в м3/с;

Н - напор ГЭС в м;

η - КПД ГЭС, учитывающий потери в гидравлических сооружениях, водоводах, турбинах, генераторах. Для малых ГЭС η≈0,5. КПД гидротурбин изменяется в пределах 0,5 ÷ 0,9.


КОНТРОЛЬНЫЕ ВОПРОСЫ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: