double arrow

Определение напряжений при растяжении-сжатии

Растяжением или сжатием будем называть такое нагружение стержня, когда в поперечных сечениях возникает лишь один внутренний силовой фактор - нормальная сила.

Рис.2.1

Для определения продольных сил используем метод сечений. Проведем сечение а-а и спроектируем все силы, действующие на нижнею часть сечения, на ось стержня. Приравнивая сумму проекции к нулю, найдем:

N1=-3F

Минус показывает, что действует сжатие.

На участке А-В (в сечении в-в):

N2=5F

Наглядное представление о законе изменения продольных сил по длине дает эпюра продольных сил.


Если на поверхности призматического стержня нанести прямоугольную сетку, то после деформации линии останутся взаимно перпендикулярными.

Рис. 2.2

Все горизонтальные линии (c-d) переместятся вниз, оставаясь горизонтальными и прямыми. Можно предположить, что внутри стержня будет такая же картина. Это гипотеза Бернули или гипотеза плоских сечений: «Плоское сечение, перпендикулярное оси стержня после деформирования остается плоским и перпендикулярным оси сечения».

На этом основании считаем, что поперечная сила равномерно распределена по сечению.

  Эта гипотеза справедлива, в первую очередь, для стержневых конструкций.

Интенсивность поперечной силы - нормальное напряжение:

Читайте также:

Деформации при растяжении-сжатии и закон Гука

Определение теплоты парообразования легко летучей жидкости по зависимости давления насыщенных паров от температуры

Некоторые элементы вакуумной техники

Определение коэффициента внутреннего трения методом Стокса

Изучение зависимости коэффициента теплопроводности газа от давления

Вернуться в оглавление: Физика


Сейчас читают про: