Студопедия
Обратная связь

Сколько стоит твоя работа?
Тип работы:*
Тема:*
Телефон:
Электронная почта:*
Телефон и почта ТОЛЬКО для обратной связи и нигде не сохраняется.

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

При прочих равных условиях наибольшую энтропию имеет опыт с равновероятными исходами.

Другими словами, энтропия максимальна в опытах, где все исходы равновероятны. Здесь усматривается аналогия (имеющая глубинную первооснову!) с понятием энтропии, используемой в физике. Впервые понятие энтропии было введено в 1865 г. немецким физиком Рудольфом Клаузиусом как функции состояния термодинамической системы, определяющей направленность самопроизвольных процессов в системе. Клаузиус сформулировал II начало термодинамики. В частности, он показал, что энтропия достигает максимума в состоянии равновесия системы. Позднее (в 1872 г.) Людвиг Больцман, развивая статистическую теорию, связал энтропию системы с вероятностью ее состояния, дал статистическое (вероятностное) толкование II-му началу термодинамики и, в частности, показал, что вероятность максимальна у полностью разупорядоченной (равновесной) системы, причем, энтропия и термодинамическая вероятность оказались связанными логарифмической зависимостью. Другими словами, в физике энтропия оказывается мерой беспорядка в системе. При этом беспорядок понимается как отсутствие знания о характеристиках объекта (например, координат и скорости молекулы); с ростом энтропии уменьшается порядок в системе, т.е. наши знания о ней. Сходство понятий и соотношений между ними в теории информации и статистической термодинамике, как оказалось позднее, совершенно не случайно*.

* Подробнее об этом можно причитать в книгах Л.Бриллюэна [7] и Р.Л.Стратоновича [39].

Кстати, результат, полученный в рассмотренном выше примере 2.1, иллюстрирует справедливость формулы (2.7).

 

Читайте также:

Свойства энтропии

Классификация моделей

Контрольные вопросы и задания

Пример 4.14

Пример 2.7

Вернуться в оглавление: Теоретические основы информатики

Просмотров: 1733

 
 

54.80.148.252 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.