Студопедия
Обратная связь

Сколько стоит твоя работа?
Тип работы:*
Тема:*
Телефон:
Электронная почта:*
Телефон и почта ТОЛЬКО для обратной связи и нигде не сохраняется.

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

Пример 4.17

Найти сумму X1 = 0,87654∙101, а Х2 = 0,94567∙102, если для записи мантиссы отводится 5 разрядов.

Согласно алгоритму ∆k = 1 и k1 < k2. Следовательно, k = k2 = 2, а мантисса числа X1 должна быть сдвинута на 1 разряд вправо (при этом из-за ограниченности разрядно сетки пропадет цифра 4). Новая мантисса получается суммированием М = 0,94567 + 0,08765 = 1,03332; поскольку она выходит за допустимый интервал представления мантисс, необходимо его нормализовать М' = 0,10333 (при этом теряется цифра 2 в младшем разряде); k' = k + 1 = 3. Окончательно получаем: X = - 0,10333∙103. Точный результат суммирования оказался бы 103,3324.

Следствием существования погрешности сложения (и, в равной мере, вычитания) кодов вещественных чисел оказывается то, что такое суммирование не обладает ассоциативностью, т.е. в общем случае

Вычитание нормализованных чисел, как и чисел целых, не является самостоятельной операцией и сводится к сложению с дополнительным кодом числа.

Умножение нормализованных чисел Х1ÄХ2 производится в соответствии с правилами: если по-прежнему X1 = M1рk1 и Х2 = М2 ∙ pk2, то, очевидно, мантисса произведения М = М1 M2, а порядок k = k1 + k2; при необходимости полученное число нормализуется.

Операция деления, проводимая как над целыми, так и вещественными числами, приводит в общем случае к появлению вещественного числа, поэтому целые числа предварительно преобразуются в вещественный тип, т.е. переводятся в нормализованную форму. Очевидно, при делении Х1ÆХ2 мантисса частного М = М12, а порядок k = k1 - k2. При этом непосредственно операция деления сводится к сдвигу делителя вправо и последовательному вычитанию его из делителя (т.е. сложения с дополнительным кодом вычитаемого). Как и в предыдущих операциях, результат деления при необходимости нормализуется.

В операциях умножения нормализованных чисел в компьютере возможны ситуации, когда не будут в точности выполняться сочетательный и распределительный законы, т.е.

Время выполнения операций с кодами вещественных чисел в форме с плавающей запятой гораздо больше, нежели с числами целыми или с фиксированной запятой. По этой причине для ускорения обработки на компьютерах IBM с процессорами Intel 80286 и 80386 ставились так называемые «математические сопроцессоры»; в современных компьютерах команды (точнее, микропрограммы, поскольку они содержат последовательность действий) обработки вещественных чисел включены в перечень команд центрального процессора.

Заканчивая рассмотрение порядка обработки чисел в компьютере, хотелось бы сделать ряд общих замечаний:

1. В компьютерах арифметические устройства выполняют действия не с самими двоичными числами по правилам двоичной арифметики, а с их двоичными кодами (представлениями) по правилам арифметики двоичных кодов.

2. Причиной отличий правил арифметики двоичных кодов от правил обычной арифметики является ограниченность разрядной сетки, применяемой для записи чисел в компьютере. По этой же причине отличаются понятия «ноль» и «машинный ноль», «бесконечность» - «максимальное число», а также становится возможной ситуация переполнения, что требует ее постоянного отслеживания.

3. Применение при вычислениях формы представления чисел с плавающей запятой обеспечивает единообразие при их записи и обработке, и, что важно, в результате автоматического масштабирования числа на каждом этапе его обработки сокращается погрешность вычислений.

4. Различие правил обработки целых и нормализованных чисел приводит к необходимости точного описания типов переменных перед их использованием в программах. Вторая причина описания типов состоит в оптимизации расходования памяти компьютера, поскольку числа разных типов требуют для хранения различных ресурсов памяти.





 

Читайте также:

Контрольные вопросы и задания

Схемы из логических элементов и задержек

Нестрогое определение алгоритма

Пример 9.3

Вернуться в оглавление: Теоретические основы информатики

Просмотров: 1693

 
 

54.80.10.56 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.