РЕШЕНИЕ МЕТРИЧЕСКИХ ЗАДАЧ СПОСОБАМИ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА

Способами преобразования комплексного чертежа могут быть решены только те метрические задачи, которые имеют только один геометрический элемент, несущий на себе одну искомую численную характеристику.

Алгоритм решения метрической задачи с помощью преобразования комплексного чертежа сводится к следующему:

1) определяется геометрический элемент оригинала, несущий на себе искомую численную характеристику и,

2) определяется “решающее положение” оригинала по отношению к плоскости проекций. (Решающим положением оригинала называют такое положение, при котором геометрический элемент, несущий на себе искомую численную характеристику, может быть спроецирован на плоскость проекций без искажений).

Решающих положений может быть только четыре, и им соответствуют и четыре известных задачи на преобразование комплексного чертежа.

Читайте также:

ПЛОСКОСТИ И ПРЯМЫЕ, КАСАТЕЛЬНЫЕ К КРИВОЙ ПОВЕРХНОСТИ В ДАННОЙ ТОЧКЕ

ПОСТРОЕНИЕ ИЗОБРАЖЕНИЙ ФИГУР ПО ЗАДАННОМУ НАПРАВЛЕНИЮ

ЭПЮР ГАСПАРА МОНЖА ИЛИ КОМПЛЕКСНЫЙ ЧЕРТЕЖ

ЛИНИИ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ПЛОСКОСТЯМ ПРОЕКЦИЙ

ПЛОСКИЕ КРИВЫЕ ЛИНИИ

Вернуться в оглавление: НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ


double arrow
Сейчас читают про: