Группы органоидов.Цитоплазма 14 стр

В учебнике Ботаники на 28 стр.

5) Протопласт - активное содержимое растительной клетки. Основной компонент протопласта - белок. У большинства зрелых растительных клеток центральную часть занимает крупная, заполненная клеточным сокомвакуоль, главное содержимое которой - вода с растворенными в ней минеральными и органическими веществами. Клеточная оболочка и вакуоль представляют собой продукты жизнедеятельности протопласта.

Большую часть протопласта растительной клетки занимает цитоплазма, меньшую по массе - ядро. От вакуолипротопласт отграничен мембраной, называемой тонопластом, от клеточной стенки - другой мембраной -плазмалеммой. В протопласте осуществляются все основные процессы клеточного метаболизма. Наследственный материал клетки главным образом сосредоточен в ядре. От цитоплазмы ядро также отделено мембранами.

Протопласт представляет собой многофазную коллоидную систему. Обычно это гидрозоль, где дисперсной средой является вода (90-95% массы протопласта), а дисперсной фазой - белки, нуклеиновые кислоты, липидыи углеводы - основные классы соединений, слагающих протопласт. В живой растительной клетке содержимое цитоплазмы находится в постоянном движении. Можно видеть, как органоиды и другие включения вовлекаются в это движение, называемое током цитоплазмы или циклозом. Циклоз прекращается в мертвых клетках. Следует сказать, что основное назначение циклоза неизвестно.Помимо белков, нуклеиновых кислот, липидов и углеводов, в клетке обычно имеется от 2 до 6% неорганических веществ (в виде солей), а также имеются витамины, контролирующие общий ход обмена веществ, и гормоны - физиологически активные вещества, регулирующие процессы роста и развития.

Белки, нуклеиновые кислоты, липиды и углеводы синтезируются в самой растительной клетке. В основе этого синтеза лежат процессы фотосинтеза, осуществляемые за счет энергии света. Непосредственным накопителем и переносчиком энергии при всех реакциях метаболизма служат молекулы аденозинтрифосфата (АТФ). Энергия АТФ накапливается в виде фосфатных связей. При необходимости она легко высвобождается, а АТФ переходит в аденозиндифосфат (АДФ).

Группы органоидов.Цитоплазма 14 стр.

6) Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.

Всем пластидам свойственен ряд общих черт. Они имеют собственный геном, одинаковый у всех представителей одного вида растений, собственную белоксинтезирующую систему; от цитозоля пластиды отделены двумя мембранами - наружной и внутренней. Для некоторых фототрофных организмов число пластидных мембран может быть больше. Например, пластиды эвглен и динфлагеллят окружены тремя, а у золотистых, бурых, желто-зелёных и диатомовых водорослей они имеют четыре мембраны. Это связано с происхождением пластид. Считается, что симбиотический процесс, результатом которого стало формирование пластид, в процессе эволюции происходило неоднократно (как минимум, трижды).

У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.

Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.Структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.

у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.

Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.

Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

- хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);

- хлорофилл В (желто-зеленый) - 30 % (там же);

- хлорофилл С, D и E встречается реже - у других групп водорослей;

каротиноиды:

- оранжево-красные каротины (углеводороды);

- желтые (реже красные) ксантофиллы (окисленные каротины). Благодаря ксантофиллу фикоксантину хлоропласты бурых водорослей (феопласты) окрашены в коричневый цвет;

фикобилипротеиды, содержащиеся в родопластах (хлоропластах красных и сине-зеленых водорослей):

- голубой фикоцианин;

- красный фикоэритрин.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: