Компомеры.Назначение,свойства

Компомеры (гласиозиты) – реставрационные материалы, представляющие собой композитно-иономерные составы. Свое название эта группа материалов получила в результате комбинации слов КОМПОзит и стеклоиономер.

По сравнению со стеклоиономерами материал обладает очень высокими эстетическими свойствами и стабильностью цвета в течение нескольких лет. Применение адгезивов в сочетании со стеклоиономерным механизмом прикрепления к твердым тканям зубов обеспечивает компомеру высокую прочность прикрепления и краевого прилегания, а выделение фтора — противокариозный эффект. Как и стеклоиономеры, материал не требует послойного внесения в полость, что значительно облегчает его клиническое использование.

Показания к применению компомеров:

1. Пломбирование кариозных полостей всех классов в молочных зубах, если возможно обеспечить абсолютную сухость полости в течение всего времени пломбирования.

2. Пломбирование кариозных полостей V класса, клиновидных дефектов, эрозий эмали постоянных зубов (обязательно препарирование полости).

3. Пломбирование полостей III класса в постоянных зубах.

4. Временное пломбирование полостей при травме зубов.

5. Наложение базовой прокладки под композит при пломбировании методом сандвич-техники

Компомеры выпускают в шприцах и капсулах. Подготовка к заполнению полости и начальные этапы пломбирования не отличаются от таковых в случае применения композитов световой полимеризации. Отличается этап внесения материала, поскольку компомеры можно вносить толстым слоем, практически заполняя кариозные полости средних размеров полностью. Компомеры меньше реагируют на направление света полимеризационной лампы, так как имеют дополнительно стеклоиономерный механизм затвердения. Завершающая обработка и полирование такие же, как и при использовании композитов. Первый компомер — «Dyract»

23.Адгезивные системы композитов. Назначение, механизмы взаимодействия с тканями зуба. В стоматологии выделяют два вида адгезии: Механическую – за счет микромеханического сцепления материала с тканями зуба; Химическую – за счет образования химической связи материала с дентином и эмалью. Химической адгезией обладают только СИЦ. Все остальные материалы, используемые в стоматологии, обладают механической и микромеханической адгезией. Механическая адгезия - соединение материалов с твердыми тканями зуба за счет механической ретенции с участием микромеханических пор и шероховатостей на их поверхности.

Механизмы сцепления композитов с поверхностью эмали. Под воздействием кислот происходит селективное растворение периферических и центральных зон эмалевых призм на глубину до 5-10 нм и преобразование поверхности эмали. В результате механического скашивания эмалевых призм и обработки эмали кислотой увеличивается активная поверхность сцепления с композиционными материалами и улучшается возможность обволакивания поверхностного слоя эмали гидрофобными и вязкими адгезивами. Они проникают из-за высокой вязкости медленно на всю глубину протравленной эмали. После полимеризации адгезива образуются в межпризменных участках отростки, сцепляющиеся механически с поверхностью эмали и способствующие, таким образом, микроретенционному сцеплению композита с поверхностью эмали. При протравливании эмали кислотой с поверхности удаляется слой толщиной 10 мкн и образуются микропоры глубиной 5-50 мкн. Чаще всего в современной стоматологии для кислотного травления тканей зуба используют ортофосфорную кислоту. Наиболее оптимальная концентрация кислоты – 30-40%. В ряде случаев для протравливания дентина рекомендуется использование слабых растворов органических кислот. Длительность травления эмали кислотой обычно составляет 30 секунд. Экспериментальные исследования с использованием СЭМ показали, что различий в степени пористости поверхности эмали при экспозиции 30 секунд и 60 секунд нет. Кроме этого было доказано, что время воздействия кислоты более 60 секунд приводит к разрушению эмалевых призм и ухудшению адгезии.

Механизмы сцепления композитов с поверхностью дентина. Природа живого дентина такова, что его поверхность всегда влажная, а высушивание в клинических условиях практически невыполнимо. Из-за скорости движения жидкости в дентинных канальцах на поверхности дентина неоднократно происходит полное обновление влаги. В клинических условиях даже после высушивания кариозной полости наблюдается незаметная остаточная влажность, которая может влиять на прочность соединения дентина с композитом. В связи с этим дентинные адгезивные системы должны быть гидрофильными, т.е. водосовместимыми.

Еще одной проблемой в механизме сцепления композита с дентином является смазанный слой “smear layer”, образующийся вследствие инструментальной обработки дентина и состоящий из частиц гидроксилапатитов, разрушенных остатков одонтобластов и денатурированных коллагеновых волокон. Этот слой достигает в зависимости от вида препарирования толщины до 5 нм, он закупоривает дентинные канальцы и покрывает, как прокладкой, интертубулярный дентин. Если вначале он рассматривался как изолятор, предотвращающий проникновение микроорганизмов в дентинные канальцы, то с настоящее время не вызывает сомнения тот факт, что он мешает адгезии композита с поверхностью дентина и соответственно формированию прочного адгезивного соединения.

Анализируя различные адгезивные системы для дентина и их механизмы сцепления, принципиально различают два подхода. В первом случае смазаный слой полностью сохраняется на поверхности дентина и пропитывается гидрофильными маловязкими мономерами и непосредственно используется как связующий слой между дентином и композитом.

При втором подходе – путём растворения смазаного слоя и поверхностной декальцинации дентина. Этот подход является наиболее распространенным в настоящее время.

Кондиционирование дентина – это химическое изменение поверхности дентина при помощи кислот, таких как лимонная, полиакриловая, молочная и т.д. При этом смазанный слой удаляется полностью или частично, также полностью или частично раскрываются дентинные канальцы. Кроме этого происходит деминерализация поверхностного слоя дентина, обнажение коллагеновых волокон органической матрицы и активации ионов и апатитов дентина.

Кондиционеры в ряде адгезивных систем необходимо удалять при помощи струи проточной воды. Поверхность дентина необходимо после этого слегка просушить. Одним из основных условий качественной адгезии является степень влажности дентина после удаления травильного раствора. Это связано в первую очередь с гифрофильностью праймера. Так сила адгезии резко уменьшается при пересушивании дентина. При этом отмечается коллапс, спадение коллагеновых волокон, что ухудшает проникновение праймера между ними для образования прочной связи. Слишком влажный дентин также не обеспечивает достаточной адгезии. Основным критерием степени влажности дентина является «искрящийся» дентин, на котором отсутствуют «мокрые лужи».

Последующая аппликация адгезивной системы для дентина (праймера) обеспечивает проникновение гидрофильных мономеров в раскрытые дентинные канальцы, пропитывание деминерализованного поверхностного слоя дентина и сцепление с его обнажёнными коллагеновыми волокнами. С образованием гибридной зоны. Гидрофильные смолы, входящие в состав дентинного адгезива, проникают в дентинные канальцы; пространства, занятые ранее гидроксиапатитом, инкапсулируют коллагеновые волокна. После полимеризации адгезива образуется тонкий слой нового вещества, состоящего из адгезивных компонентов и коллагеновых волокон дентина. Он и называется гибридным слоем.

Гибридный слой не только обеспечивает надежную фиксацию композита к дентину, но также является эффективным защитным барьером против инвазии микроорганизмов и химических веществ в дентинные канальцы и полость зуба. Кроме того, он перекрывает движение ликвора в дентинных канальцах и предупреждает постоперативную чувствительность.

Адгезивные системы для эмали. Этапы работы с адгезивными системами для эмали:

протравливание поверхности эмали в течение 30 секунд при помощи 37% ортофосфорной кислоты, входящей в состав травильных гелей;

удаление травильного геля струей проточной воды в течение 30 секунд;

высушивание эмали и контроль качества протравки (протравленная эмаль имеет матовый оттенок);

смешивание компонентов адгезивной системы в соотношении 1:1;

внесение адгезивной системы в кариозную полость при помощи аппликатора (наносится на подготовленную эмали и изолирующую прокладку);

распределение эмалевой адгезивной системы при помощи слабой струи воздуха;

внесение композиционного материала.

Адгезивные системы для дентина (праймеры). Первое поколение. Первое поколение адгезивов появилось в

конце 70-х годов прошлого века. Их характеризуют высокие показатели адгезии к эмали, но адгезия к дентину является крайне низкой – как правило, не больше 2МПа. Адгезия достигалась за счет взаимодействия бонда и кальция, содержащегося в дентине. Второе поколение. Здесь была сделана попытка задействовать смазанный слой для получения более высоких показателей адгезии к дентину. Результатом явилось увеличение этого показателя до 2-8 МПа, что, конечно же, абсолютно недостаточно для надежной фиксации. Кроме того, при использовании этих систем часто наблюдались микроподтекания, проблема постоперационной чувствительности также не была решена. Третье поколение. при их использовании наблюдалось значительное снижение постоперационной чувствительности. Адгезивы этого поколения впервые обеспечивали адгезию не только к зубу, но и к металлам, и керамике. Основной же проблемой явилась недолговечность бондинговых агентов. Некоторые исследования продемонстрировали значительное снижение показателей адгезии уже через 3 года после выполнения реставрации. 4-го поколения содержат 3 компонента: протравливающий агент или кондиционер (для травления эмали и дентина), праймер (смесь гидрофильных мономеров) и адгезив. Предусматривают трехэтапную технику – протравливание (эмали более длительное время, чем дентина) с последующим смывом и подсушиванием, нанесение праймера с высушиванием (попадание праймера на эмаль не влияет на силу адгезии; при протравливании только эмали использование праймера необязательно), нанесение и полимеризация адгезива. Обеспечивают силу адгезии к эмали и дентину около 30 МПа. 5-го поколения – препараты, в которых праймер и адгезив объединены (однокомпонентная система). Предусматривают двухэтапную технику – протравливание (кондиционирование) и нанесение однокомпонентного адгезива. Эти адгезивные системы проще в применении, однако сила адгезии несколько меньше (на 10-30% в лабораторных условиях), чем у 4-го поколения адгезивных систем. 6-го и 7-го поколения – одноэтапные препараты, сочетающие свойства очистителя (кондиционера, протравливающего агента), праймера и адгезива. Пока не получили широкого распространения.

24. Реставрационная стоматология отличается от пломбирования зубов при лечении в стоматологии. Отличия обычной пломбы от усилий специалиста реставрационной стоматологии заключается в том, что при реставрации зубов восстанавливается не только функциональность зуба, но и утраченные ткани имитирующими натуральный дентин и эмаль материалами, схожими по цвету и прозрачности. Таким образом, в особенности эстетической реставрации в стоматологии входит и лечение зубов в стоматологии, и художественная работа над восстановлением формы, цвета и прозрачности поврежденного зуба.

В реставрационной стоматологии искусственный зуб или часть зуба не отличается от натуральных по цвету, прозрачности, форме, блеску поверхности. Кроме того, такой зуб активно участвует в процессе жевания, то есть его функциональность полностью восстановлена.

25. Эндодонтический инструментарий. Эндодонтические инструменты используются для механической (инструментальной) обработки корневых каналов. В настоящее время эндодонтические инструменты изготавливаются из углеродистой стали, хромоникелевого и никель-титанового сплава. Последние имеют ряд преимуществ: безопасность верхушки рабочей части, высокую гибкость и «память», благодаря которой они стремятся к первоначальной форме при их искривлении, что в свою очередь, облегчает расширение канала. Эндодонтические инструменты предназначены как для ручной обработки корневых каналов, так и для машинной.

Для удобства работы с эндодонтическими инструментами, по ISO (Международная система стандартов) было принята следующая совокупность вариантов кода.

Цифровая кодировка эндодонтических инструментов (от 6-и до 140), которая наносится непосредственно на ручку или на фабричную упаковку эндодонтического инструмента и соответствует диаметру инструмента. Например, номер 6 соответствует диаметру 0,06мм.

Геометрическая кодировка эндодонтических инструментов (круг, треугольник, квадрат, спираль, восьмиугольник), которая отображает поперечное сечение рабочей части эндодонтического инструмента.

Цветовая кодировка эндодонтических инструментов состоит из 6-и основных и трех промежуточных цветов. При расширении канала ни один цвет не должен быть пропущен!

Строение эндодонтических инструментов

Эндодонтический инструмент состоит из полимерной ручки с цветовой, цифровой и геометрической кодировкой, стержня с рабочей частью и силиконового стоппера для фиксации рабочей длины инструмента. Следует отметить, что стержень инструмента может иметь разную длину (21, 25, 28, 31), но длина рабочей части постоянна и равна 16мм.

Эндодонтические инструменты, по их предназначению, подразделяются на следующие группы:

· Эндодонтические инструменты для диагностики

· Эндодонтические инструменты для расширения устья корневого канала

· Эндодонтические инструменты для удаления мягких тканей из корневого канала

· Эндодонтические инструменты для прохождения корневого канала

· Эндодонтические инструменты для расширения корневого канала

· Эндодонтические инструменты для пломбирования корневого канала

· Эндодонтические инструменты для диагностики

А) Корневая игла Миллера используется для определения проходимости и направления корневого канала. На поперечном сечении имеет округлую или треугольную форму.

Глубиномер, как говорит само название, используется для определения длины корневого канала.

Верифер - используется для предварительного определения размера гуттаперчевого штифта, при обтурации корневых каналов термофилами.собой равномерно суживающуюся гибкую иглу, которая на поперечном сечении имеет округлую форму.

Эндодонтические инструменты для расширения устья канала

Gates Glidden – это дриль, состоящий из хвостовика, с помощью которого инструмент фиксируется в наконечнике, длинного стержня и короткой каплеобразной рабочей части. Рабочая часть инструмента состоит из затупленной верхушки и режущих площадей. В серию Gates Glidden входят 6 инструментов разных размеров: 50, 70, 90, 110, 130, 150.

Б) Largo или PeesoReamer – это дриль, которая по сравнению с Gates Glidden имеет более удлиненную рабочую часть. Несмотря на то, что ларго имеет затупленную верхушку, тем не менее, у инструмента очень выражена режущая способность, в связи с чем ее редко применяют для расширения устья корневого канала. В основном дриль ларго используется, чтобы освободить место для штифта в заранее расширенном корневом канале.

Orifice opener – представляет собой равномерно сужающуюся равнобедренную дриль, которая предназначена для расширения прямых участков корневого канала.

Beutelrock reamer 1 - Имеет пламевидную рабочую часть с 4 острыми гранями. Длина данного эндодонтического инструмента составляет 11мм.

Д) Beutelrock reamer 2 - это дриль цилиндрической формы, которая получается в результате скручивания острой пластинки вокруг собственной оси. Используется для расширения прямых участков корневого канала.

Эндодонтические инструменты для удаления мягких тканей корневого канала

Пульпэкстрактор – представляет собой металлический стержень, с расположенными под острым углом мелкими шипами, которые зацепляют и выводят пульпу зуба. Следует отметить, что пульпэкстрактор крайне хрупок, и потому не рекомендуется крутить его в корневом канале больше чем на 360. Кроме того, во время изъятия инструмента из корневого канала, шипы цепляются за дентин и искривляются, в связи с чем пульпэкстрактор предназначен для разового пользования.

Эндодонтические инструменты для прохождения корневого канала

K Reamer - изготовлен путем скручивания металлического стержня с квадратным поперечным сечением. Для данного инструмента характерны большая гибкость и наличие острых режущих краев, которые работают во время извлечения инструмента из корневого канала.

K Flexoreamer – по сравнению с K Reamer обладает большей гибкостью, что обусловлено как уменьшенным шагом спирали, так и треугольным поперечным сечением стержня инструмента. Используется для прохождения искривленных каналов.

K Reamer Farside – используется для прохождения коротких и узких корневых каналов. По сравнению с остальными римерами он менее гибкий и более короткий (длина стержня составляет всего 18мм).

Эндодонтические инструменты для расширения корневого канала

K File, как и K Reamer получается путем скручивания металлической проволоки с квадратным поперечным сечением, но имеет большее количество режущих плоскостей, благодаря большему количеству витков. Благодаря такому расположению режущих плоскостей и агрессивному кончику K File имеет очень высокие режущие способности. Инструмент можно использовать как вращательными, так и возвратно поступательными движениями.

K Flexofile – по своему строению почти идентичен K Flexoreamer-у и отличается от него только меньшим расстоянием между режущими краями. Используется для расширения изогнутых корневых каналов.

K File Nitiflex – это K File изготовленный из никель-титанового сплава, что придает инструменту гибкость. В целях безопасности кончик данного инструмента затуплен.

H File - Изготовляют путем фрезеровки спиралевидного желоба. Имеет острые режущие края, которые расположены под углом 60° к стержню. Инструмент используется возвратно-поступательными движениями.

Safety – это, по сути, H file одна сторона которого заглажена. Такое строение инструмента помогает расширить искривленные корневые каналы без перфорации.

Е) Ergo File – это никель-титановая модификация H File-а, имеет неагрессивный (затупленный) кончик.

Ж) A File - как и предыдущие два инструмента является модификацией H File-а, но в отличие от него режущие края A file-а расположены под более острым углом к стержню. Используется для прохождения искривленных корневых каналов.

Эндодонтические инструменты для наполнения корневого канала

Каналонаполнитель представляет собой коническую спираль, скрученную против часовой стрелки.

Spreader – это ручной эндодонтический инструмент конусной формы, предназначенный для проведения латеральной конденсации гуттаперчевых штифтов.

Plugger – это ручной эндодонтический инструмент целлиндрической формы, предназначенный для проведения вертикальной конденсации гуттаперчевых штифтов. В отличие от Spreader-а верхушечная часть данного инструмента затуплена.

Gutta Condensor – это эндодонтический инструмент, предназначенный для конденсации гуттаперчи термофилом. Рабочая часть Condensor-a похожа на обратный HFile и используется для работы с наконечником.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: