Флуоресценция и фосфоресценция. Закон Стокса-Ломмеля. Принципиальные схемы приборов. Тушение люминесценции

Энергия испускаемого фотона ниже, чем энергия поглощенного фотона, поэтому спектр флуоресценции молекулы находится в области более длинных волн по сравнению со спектром поглощения - закон Стокса - Ломмеля h люм < h погл

Правило Левшина: спектры поглощения и флуоресценции зеркально симметричны, поскольку структура колебательных подуровней одинакова в основном и возбужденном состояниях

Напомним, что кроме синглетного возможно триплетное возбужденное состояние (параллельные спины электронов) Прямой переход из основного состояния в возбужденное триплетное в результате поглощения фотона практически невозможен Молекула может оказаться в триплетном состоянии только в результате переходов с возбужденных синглетных состояний – интеркомбинационная конверсия – S 1Т 1 (безызлучательный переход, обозначен волнистой стрелкой) Время жизни электрона в возбужденном триплетном состоянии – не менее 10 -4 с В триплетном состоянии так же, как и в синглетном происходит колебательная релаксация, и электрон переходит на нижний колебательный уровень Т 1

Безызлучательная дезактивация Т 1 S 0 конкурирует с излучательным Т 1 S 0 переходом Фосфоресценция – излучательный переход между состояниями различной мультиплетности Хотя такие переходы теоретически запрещены, они имеют место, хотя и менее вероятны, чем S S и ТТ переходы Это происходит вследствие спин - орбитального взаимодействия, связанного с движением ядер, поэтому с увеличением массы ядра спин - орбитальное взаимодействие резко возрастает (~Z 4) Т. о., эффективность фосфоресценции возрастает при введении в молекулу люминофора (или растворителя) атомов с большими атомными номерами, например, йода или брома – эффект тяжелого атома

злучательное время фосфоресценции 10 -4 -100 с, поэтому триплетные молекулы могут легко терять свою энергию в различных безызлучательных процессах В растворах это происходит при столкновении с молекулами кислорода, имеющими неспаренные электроны Для наблюдения фосфоресценции из растворов удаляют кислород, более эффективно замораживание растворов, либо закрепление люминофоров на поверхности сорбентов

Спектр фосфоресценции в соответствии с диаграммой Яблонского лежит в области более длинных волн, чем спектр флуоресценции

С участием Т 1 - состояния может осуществляться еще один излучательный процесс – замедленная флуоресценция, который происходит в результате термической активации молекул Т 1 S 1 и последующим излучением из него Условия проявления замедленной флуоресценции довольно специфичны. Этот тип молекулярной люминесценции наблюдается в весьма ограниченных диапазонах температур, вязкостей и концентраций растворов По сравнению с флуоресценцией и фосфоресценцией ее интенсивность невелика (несколько процентов от интенсивности флуоресценции) и достигает максимальных значений при комнатной и более высоких температурах, заметно ослабевая с понижением температуры Спектр замедленной флуоресценции совпадает со спектром быстрой флуоресценции, однако время жизни замедленной флуоресценции равно времени жизни фосфоресценции

Характеристики люминесцирующих молекул Спектр возбуждения люминесценции - зависимости интенсивности люминесценции I от частоты (волнового числа) или длины волны возбуждающего света Спектр люминесценции - зависимость интенсивности люминесценции от ее длины волны I = f(λ); I = f(v) Время жизни люминесценции – время, за которое интенсивность излучения уменьшится в е раз, поскольку затухание люминесценции происходит по закону: I t = I 0 e -t/ τ

В основе количественного анализа лежит зависимость интенсивности люминесценции от концентрации люминесцирующего вещества где К – коэффициент пропорциональности В кв – квантовый выход люминесценции I 0 – интенсивность возбуждающего света ε - молярный коэффициент поглощения l – толщина слоя раствора Это соотношение справедливо, если постоянны: квантовый выход интенсивность возбуждающего света

Зависимость линейна в пределах 3-4 порядков величин концентрации (10 -7 -10 -4 М) При концентрациях >10 -4 М линейность графика нарушается из - за концентрационного тушения люминесценции, самопоглощения и др. Зависимость интенсивности флуоресценции от концентрации флуоресцирующего вещества

Тушение люминесценции происходит при столкновении возбужденной молекулы с другими, особенно парамагнитными (растворенный кислород), которые стимулируют процессы интеркомбинационной конверсии Повышение температуры уменьшает выход люминесценции. Это связано с тем, что возрастает частота соударений, при которых происходит безызлучательная дезактивация возбужденных молекул. Поэтому определения проводятся, как правило, при комнатной температуре Присутствие посторонних веществ также понижает выход люминесценции. Наиболее активные тушители люминесценции - катионы и анионы «тяжелых» элементов (I -, Br -, Cs + и др.), парамагнитные ионы и молекулы (Mn 2+, O 2 и др.), молекулы растворителя Самопоглощение – состоит в поглощении части испускаемого света слоем люминесцирующего вещества

Схема однолучевого люминесцентного спектрометра: 1-источник света; 2 - первичное устройство выделения спектрального интервала (монохроматор, фильтр); 3 -проба; 4 - вторичное устройство выделения спектрального интервала (монохроматор, фильтр); 5- фотоприемник; 6 - усилитель; 7 - индикатор выходного сигнала. Широко применяются для определения следов различных примесей в неорганических и органических соединениях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: