Плетизмография всего тела (общая плетизмография)

Согласно закону Бойля–Мариотта, объем газа меняется обратно пропорционально приложенному давлению. Этот закон используется при определении объема легких у человека, находящегося в герметично закрытой камере – кабине плетизмографа. При этом обследуемый дышит воздухом камеры через мундштук, который можно перекрывать электромагнитной заслонкой, изолируя тем самым дыхательные пути и легкие от объема камеры. После того как с помощью специальных приспособлений стабилизированы колебания температуры, влажности и давления, связанные с пребыванием в кабине испытуемого, приступают к измерениям.

При спокойном дыхании воздухом кабины альвеолярное давление в конце вдоха и в конце выдоха становится равным давлению в кабине и атмосферному. Если в конце спокойного выдоха перекрыть дыхательные пути заслонкой и предложить обследуемому сделать короткий вдох и выдох без доступа воздуха в легкие (маневр Пфлюгера), то газ в альвеолах подвергнется небольшой декомпрессии на вдохе и компрессии на выдохе.

Эти колебания давления (ΔРA) можно измерить в полости рта (непосредственно за заслонкой) и зарегистрировать двухкоординатным самописцем одновременно с колебаниями камерного давления (ΔРk). Зная ΔРk нетрудно рассчитать изменения объема камеры ΔVk во время маневра Пфлюгера, когда воздух в камере подвергается компрессии и декомпрессии:

ΔVk =ΔР х K

где К – коэффициент пропорциональности между изменениями объема камеры и давлением в ней, предварительно измеряемый специальной калибровочной помпой. Поскольку колебания ΔVk возникают вследствие движений грудной стенки, эта величина соответствует колебаниям альвеол ΔVА. Используя закон Бойля – Мариотта, можно составить уравнение, в левой части которого исходные давление и объем альвеол, в правой – давление и объем при выполнении маневра Пфлюгера:

VА х РÖатм= (VА + ΔVk) х (РÖатм + ΔРA)

откуда после ряда преобразований и упрощений и внесения поправок на давление водяных паров следует

VА = (РÖатм – РÖвод) х ΔРк х К/ ΔРA

Таким образом, общая плетизмография позволяет измерить внутригрудной объем газа (ВГО, равный VА) без применения газоаналитических методов, с помощью которых обычно оценивается ФОЕ. Поскольку при этом определяется весь объем газа, находящийся в легких, в том числе и не принимающий участия в вентиляции, ВГО обычно несколько больше ФОЕ.

Общая плетизмография позволяет определить и аэродинамическое сопротивление дыхательных путей RÖaw (которое иногда называют бронхиальным, что не совсем точно, так как трахея и верхние дыхательные пути тоже вносят вклад в его формирование). Для этого необходимо знать перепад давлений между альвеолами и полостью рта и поток на выходе из дыхательных путей. При дыхании в открытой системе ротовым давлением можно пренебречь, принимая его равным атмосферному.

Пульсоксиметрия – неинвазивный метод измерения процентного содержания оксигемоглобина в артериальной крови (SpO2).
В клинической практике предлагается пользоваться терминами «насыщение артериальной крови кислородом» или «оксигенация артериальной крови», а сам параметр SpO2 обозначать термином «сатурация».
Работа пульсоксиметра основана на способности гемоглобина связанного (НbО2) и не связанного с кислородом (Нb) абсорбировать свет различной длины волны. Оксигенированный гемоглобин больше абсорбирует инфракрасный свет, деоксигенированный гемоглобин больше абсорбирует красный свет. В пульсоксиметре установлены два светодиода, излучающих красный и инфракрасный свет. На противоположной части датчика располагается фотодетектор, который определяет интенсивность падающего на него светового потока. Измеряя разницу между количеством света, абсорбируемого во время систолы и диастолы, пульсоксиметр определяет величину артериальной пульсации. Сатурация рассчитывается, как соотношение количества НbО2 к общему количеству гемоглобина, выраженное в процентах:

SpО2 = (НbО2 / НbО2 + Нb) х 100%.
Показатели SpO2 коррелируют с парциальным давлением кислорода в крови (PaO2), которое в норме составляет 80-100 мм рт. ст. Снижение PaO2 влечет за собой снижение SpO2, однако зависимость носит нелинейный характер:
• 80-100 мм рт. ст. PaO2 соответствует 95-100% SpO2
• 60 мм рт. ст. PaO2 соответствует 90% SpO2
• 40 мм рт ст. PaO2 соответствует 75% SpO2
Норма пульсоксиметрии для здорового человека варьирует в пределах от 96 до 98%, более высокие значения достигаются при кислородной терапии.

При нарушении функции легких им не удается извлекать из воздуха достаточное количество кислорода, и сатурация падает. Если болезнь развивается постепенно, в течение месяцев и лет, человек может не замечать снижение сатурации до 92-95%. Однако уже на этом этапе ухудшается переносимость физической нагрузки. При снижении сатурации до 89-92% следует задуматься о необходимости кислородотерапии и/или неинвазивной вентиляции легких. При значениях меньше 60-70% могут развиваться необратимые изменения в чувствительных к уровню кислорода тканях, прежде всего, в головном мозге.

Виды пульсоксиметрии

Трансмиссионная — методика, основанная на анализе светового потока, пропускаемого через ткани организма. Чтобы свет от светодиодов мог проходить через ткани и анализироваться прибором, периферический датчик закрепляют на таких частях тела, как палец, мочка уха, крыло носа.

Отраженная — методика измерения уровня кислорода в крови, основанная на анализе отраженного от тканей светового потока. По принципу работы приборы, которые используются для измерения по этой методике, практически ничем не отличаются от трансмиссионных. Однако таким методом процентное наполнение гемоглобина можно измерить, установив датчик практически на любую часть тела, например, на живот или предплечье.

Ограничения и погрешности метода
Метод имеет ряд существенных ограничений:
• Яркий внешний свет и движения могут создавать нарушать работу прибора.
• Неправильное расположение датчика. Для трансмиссионных оксиметров (работающих на просвет) необходимо, чтобы обе части датчика находились симметрично, иначе путь между фотодетектором и светодиодами будет неравным и одна из длин волн будет «перегруженной». Изменение положения датчика часто приводит к внезапному «улучшению» сатурации.
• Значительное снижение перфузии периферических тканей (шок, гипотермия, гиповолемия) ведет к уменьшению или исчезновению пульсовой волны. Если нет видимой пульсовой волны на пульсоксиметре, любые цифры процента сатурации малозначимы.
• Анемия требует более высоких уровней кислорода для обеспечения транспорта кислорода. При значениях гемоглобина ниже 5 г/л может отмечаться 100% сатурация крови даже при недостатке кислорода.
• Отравление угарным газом (высокие концентрации карбоксигемоглобина могут давать значение сатурации около 100%)
• Красители, включая лак для ногтей, могут спровоцировать заниженное значение сатурации.
• Трикуспидальная регургитация вызывает венозную пульсацию и пульсоксиметр может фиксировать венозную пульсацию и сатурацию.
• При значениях сатурации ниже 70% резко возрастает погрешность метода, т.к. в алгоритмах пульсоксиметров не имеется контрольных значений для сравнения.
• Нарушение ритма сердца может нарушать восприятие пульсоксиметром пульсового сигнала.
При этом следует отметить, что возраст, пол, желтуха и кожа темного цвета практически не влияют на работу пульсоксиметра.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: