Однородные системы линейных уравнений

Однородная система линейных уравнений имеет вид

  , (1)  


где A – матрица коэффициентов; X – матрица-столбец, составленная из неизвестных.

Очевидно, что любая однородная система имеет нулевое решение , которое называется тривиальным решением.

Теорема. Если и являются решениями однородной системы (1), то и их линейная комбинация

является решением этой системы.

Доказательство. По условию теоремы 1=0 и 2=0.

Тогда для любых чисел С 1 и С 2: С 1 1=0 Þ 1 Х 1=0 и С 2 2=0Þ 2 Х 2=0. Складывая эти выражения, получаем A (С 1 Х 1+ С 2 Х 2)= 1 Х 1+ 2 Х 2= С 1 1+ С 2 2=0. Следовательно, линейная комбинация С 1 Х 1+ С 2 Х 2 решений однородной системы линейных уравнений также является решением этой системы.

Примеры:

1. Решить систему уравнений методом Гаусса. Решение. Выполним элементарные преобразования над строками матрицы коэффициентов, приведя ее к ступенчатому виду: Ранг матрицы равен 3, тогда как число неизвестных равно 4. Поэтому одну из неизвестных, например, следует рассматривать как свободный параметр. Далее нужно присвоить этому параметру произвольное значение и выразить базисные неизвестные , и через c. Преобразованная матрица соответствует следующей системе уравнений: Из последнего уравнения следует, что . Выразим остальные базисные переменные: Таким образом, общее решение системы найдено: Чтобы найти частное решение, нужно придать параметру c какое-нибудь числовое значение. Полагая c = 4, получаем Проверка: Подставим неизвестные в уравнения системы: Уравнения обратились в тождества.

***

2. Пусть . Найти общее решение однородной системы линейных уравнений AX = 0. Решение. Преобразуем коэффициентную матрицу к ступенчатому виду: Поскольку , а число неизвестных равно 4, то две неизвестные должны рассматриваться как базисные, а оставшиеся переменные как свободные параметры. Полагая и , получаем уклрлченную систему уравнений решение которой имеет вид , . Запишем общее решение и представим его в виде линейной комбинации частных решений: Если общее решение однородной системы представлено в виде линейной комбинации типа то говорят, что частные решения образуют фундаментальную систему решений. В рассматриваемом случае фундаментальную систему решений образуют частные решения и .

***

3. Предположим, что общее решение однородной системы уравнений имеет вид Очевидно, что и поэтому частные решения образуют фундаментальную систему решений.

***

4. Дана матрица . Решить однородную систему линейных уравнений AX = 0. Решение. Преобразуем коэффициентную матрицу к треугольному виду: Соответствующая система имеет только тривиальное решение .

Правило Крамера

Существует частный случай, когда решение системы линейных уравнений можно представить в явном виде. Соответствующая теорема носит название “Правило Крамера” и имеет важное значение в теоретических исследованиях.

Правило Крамера. Пусть матричное уравнение

  AX = B (1)  

описывает систему n линейных уравнений с n неизвестными.

Если , то система (1) является совместной и имеет единственное решение, описываемое формулой

  (2)  


где ; – определитель, полученный из определителя D заменой i -го столбца столбцом свободных членов матрицы B:

  (3)  

Доказательство теоремы разобьем на три части:

  1. Решение системы (1) существует и является единственным.
  2. Равенства (2) являются следствием матричного уравнения (1).
  3. Равенства (2) влекут за собой матричное уравнение (1).

Так как , то существует и при том единственная, обратная матрица .
Умножая обе части матричного уравнения (1) слева на , получаем решение этого уравнения:

  (4)  

Единственность обратной матрицы доказывает первую часть теоремы.

Перейдем к доказательству взаимно-однознаяного соответствия между формулами (1) и (2).

Используя формулу (4), получим выражение для i -го элемента. Для этого нужно умножить i -ую строку матрицы

на столбец B.

Учитывая, что i -ая строка присоединенной матрицы составлена из алгебраических дополнений , получаем следующий результат:

  (5)  

Сумма в правой части этого равенства представляет собой разложение определителя Di по элементам i -го столбца и, следовательно,

  (6)  

Вывод формул Крамера завершен. Покажем теперь, что выражения

  (7)  

влекут за собой матричное уравнение (1).

Умножим обе части уравнения (7) на и выполним суммирование по индексу i:

  (8)  

Изменим порядок суммирования в правой части полученного выражения:

  (9)  

Согласно Лемме 1 теоремы об обратной матрице,

  (10)  

где – дельта-символ Кронекера.

Учитывая, что дельта-символ снимает суммирование по одному из индексов, получаем требуемый результат:

  (11)  

Пример.

Решить методом Крамера систему линейных уравнений:

Решение. Вычислим определители, выполняя предварительно элементарные преобразования над их строками и затем разлагая полученные определители по элементам их первых столбцов.

Таким образом,

Ранее эта задача была решена методом Гаусса (Пример 1).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: