Основные числовые множества

В процессе получения количественных результатов мы постоянно имеем дело с множествами чисел. Приведем классификацию числовых множеств:

1. Натуральные числа N={n} ={1; 2; 3;…; n;…}.

2. Неотрицательные числа .

3. Целые числа .

4. Рациональные числа , где .

5. Действительные числа , полная совокупность рациональных и иррациональных чисел.

Очевидно: , т.е. каждое числовое множество является подмножеством следующего.

Все эти числовые множества обладают свойством упорядоченности, т.е. для любых двух элементов a и b любого множества можно указать, что либо , либо . Для трех различных элементов a, b и c выполняется свойство транзитивности: из и следует, что .

Ясно, что все числовые множества – бесконечны, причем N, , Z и Q – счетные (т.е. элементы этих множеств можно перенумеровать), R – несчетное множество.

При практических расчетах мы достаточно часто имеем дело не со всем числовым множеством, а с его некоторой частью, т.е. подмножеством. Изображение подмножеств числовых множеств удобно иллюстрировать с помощью числовой оси, которая в этом случае является вариантом диаграммы Эйлера-Венна. Напомним, что числовой осью называется линия (чаще всего – прямая), на которой указаны: начало отсчета, направление отсчета и единица измерения. Для удобства примем, что если конец интервала является элементом описываемого множества, то он обозначается кружочком, а если нет, то – крестиком. Тогда основные типы интервалов определяются следующим образом:

(a, b) или ограниченный открытый интервал (или открытый промежуток), концы a и b не принадлежат данному множеству точек;
или , или , аналогично или , или неограниченные открытые интервалы;
или ограниченный замкнутый интервал, концы a и b принадлежат данному множеству точек (другие названия: отрезок, сегмент, замкнутый промежуток);
или полуоткрытый интервал. И другие аналогичные варианты. Легко заметить, что квадратная скобка соответствует нестрогому знаку неравенства £ или ³, а круглая скобка – строгому знаку < или >.

Для оценивания множеств на практике удобно использовать дополнительные характеристики. Пусть A – произвольное, но не пустое множество. Число называется максимумом множества A, если и любые другие элементы множества не превосходят этого числа: . Аналогично определяется и минимум множества .

Множество A называется ограниченным сверху, если существует число k, такое, что для всех элементов множества справедливо . Это число назовем верхней гранью (или мажорантой) множества A. Минимально возможное значение k называется точной верхней гранью множества A и обозначается (supremum A).

Множество A называется ограниченным снизу, если существует число p, такое, что что для всех элементов множества справедливо . Это число назовем нижней гранью (или минорантой) множества A. Максимально возможное значение p называется точной нижней гранью множества A и обозначается (infimum A).

Функция


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: