Умножение комплексных чисел

Произведением к омплексных чисел z11 +iy1 и z22+iy2 называется комплексное число, определяемое равенством

z=z1 z2 =(x1 x2- у1 у2)+i(x1 y2+y1x 2). (28.3)

Отсюда, в частности, следует важнейшее соотношение

i 2 =- 1. (28.4)

Действительно, i2=ii=(0+1 i)(0+1i)=(0-1)+i(0+0)=-1. Благодаря соотношению (28.4) формула (28.3) получается формально путем перемножения двучленов x1+ iy1 и х2+iy2:

1 +iy1)(x2+iy2) =x1x 2 +x1 iy2+i у1 х2+iy1iy 2 =x1 x2 +i2y1 y2+i (x1 y2+y1 x2)=x1 x2-y1 y2+i(x1 y2+y1x 2).

Например,

(2-3i)(- 5+4i)=-10+8i+15i-12i2=-10+23i+12=2+23i.

Заметим, что z*z=(х+iy)(x-iy)=х22 — действительное число.

Умножение комплексных чисел обладает переместительным, сочетательным и распределительным (дистрибутивным) свойствами:

z1z2=z2z1

(z1z2)z3=z1(z2z3).

z1(z2+z3)=z1z2+z1z3.

В этом легко убедиться, используя определение (28.3).

Найдем произведение комплексных чисел z1=r1(cosφ1+isinφ1) и z2=r2(cosφ2+isinφ2), заданных в тригонометрической форме:

z1z2=r1(cosφ1+isinφ1)r2(cosφ2+isinφ2)=

r1r2(cosφ1cosφ2+isinφ1cosφ2+rcosφ1siπφ2-sinφ1sinφφ2)=

=r1r2((cosφ1cosφ2-siπφ1sinφ2)+i(sinφ1cosφ2+cosφ1 sinφ2))=

=r1r2(cos(φ12)+i sin(φ12)),

т. е.

z1z2=r1r2(cos(φ12)+isin(φ12)).

Мы показали, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Это правило распространяется на любое конечное число множителей. В частности, если есть n множителей и все они одинаковые, то

zn=(r(cosφ+isinφ))n=rn(cosnφ+isinnφ). (28.5)

Формула (28.5) называется формулой Муавра.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: