Преобразования Лоренца

Лекция 11

Специальная теория относительности. Введение

Уже в динамике Ньютона четко сформулировано выделение движения по инерции среди всех остальных движений. Прямым логическим следствием из первого закона Ньютона является утверждение, что все инерциальные наблюдатели равноправны - в той степени, в какой справедлив первый закон Ньютона. Согласно вполне правдоподобному умозаключению, равноправие наблюдателей распространяется на все другие законы движения и, следовательно, на все другие механические явления. Эйнштейн же распространил это равноправие на все явления вообще, сформулировав знаменитые постулаты:

1. Все физические законы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

2. Скорость света в вакууме равна одной и той же величине во всех системах отсчета и не зависит ни от скорости движения источника, ни от скорости движения приемника.

Преобразования Лоренца

Исходя из сформулированных выше постулатов теории относительности Эйнштейна, можно найти законы преобразований, связывающие межу собой пространственные координаты и время в двух системах отсчета, движущихся прямолинейно и равномерно относительно друг друга.


Пусть х, у, z, и х’, у’, z’ и t’,- координаты и время в инерциальных систем отсчета K и K’, а v - скорость их относительного движения (рис. 6.1).

При этом нет никаких оснований полагать, что время в системе совпадает со временем в системе K, как это безоговорочно принималось в классической физике. Для просторы выкладок выберем направление скорости за направление осей х и . Предположим, что в некоторый момент времени t’ в точке с координатами происходит некоторый физический процесс, который назовем событием. Нашей задачей является нахождение «координат» события в системе отсчета K’, т.е. нахождение величин х, y, z, t, характеризующих тот же физический процесс в системе K.

Выберем за начало отсчета времени t=0 тот момент, в который начало координат системы K’ совпадало с началом координат системы K. Пусть в момент времени t=0 из начала координат начала распространяться сферическая электромагнитная волна (рис.6.2). В системе K уравнение волновой поверхности имеет вид.

или

(6.1)

Поскольку, согласно принципу относительности Эйнштейна, закон и величина скорости распространения волны должны быть одинаковыми во всех инерциальных системах отсчета, наряду с этим уравнением с равным правом можно написать уравнение сферической волны в системе K’.

Так как в начальный момент времени начало координат систем совпадали, то

(6.2)

Формулы преобразования координат и времени должны, во-первых, не нарушать соотношений (6.1) и (6.2), а, во-вторых, быть линейными. Требования линейности связано с однородностью пространства. Т.к. движение системы K’ происходит только вдоль оси х преобразование координат у и z должно иметь вид

Закон преобразования х’ через х можно написать, исходя из следующего соображения: если в момент времени t=0 начала систем координат K и K’ совпадали, то координата плоскости х’ в системе K запишется х=νt. Следовательно, в самом общем случае можно написать

(6.3)

где коэффициент может зависеть лишь от скорости относительного движения. Не делая никаких произвольных допущений о совпадении времени в двух системах отсчета, мы можем представить t’ в виде линейной однородной функции х и t

(6.4)

Kоэффициенты и могут, вообще говоря, зависеть от скорости v. Если бы оказалось, что , а , то мы вернулись бы к преобразованиям Галилея. Для определения коэффициентов , и , отвечающих Требованиям принципа относительности Эйнштейна, мы должны подставить (6.3) и (6.5) в (6.2). Это дает

Для выполнения тождества необходимо приравнять коэффициенты при х2,t2и хt. Раскрыв скобки и проведя соответствующие преобразования получим:



Из этих трех уравнений находим неизвестные величины , и ,:

При этом всюду мы выбрали положительный знак корня. Подставляя значения , и в преобразования координат (6.3) и (6.4) находим:

(6.5)

Эти формулы носят название преобразований Лоренца. Формулы обратного преобразования от штрихованных к не штрихованным величинам:

(6.6)

Преобразования Лоренца приводят к выводам, коренным образом противоречащим привычным представлениям о свойствах времени и пространства, сложившимся на основе повседневного опыта. Рассмотрим несколько примеров применения преобразований Лоренца.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: