Определение водородной связи

 

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Существует два вида водородной связи внутримолекулярная и межмолекулярная водородные связи. Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Это особенно характерно для многих органических соединений. Если же водородная связь образуется между атомом водорода одной молекулы и атомом неметалла другой молекулы (межмолекулярная водородная связь), то молекулы образуют довольно прочные пары, цепочки, кольца. Так, муравьиная кислота и в жидком и в газообразном состоянии существует в виде димеров: а газообразный фтороводород содержат полимерные молекулы, включающие до четырех частиц HF. Прочные связи между молекулами можно найти в воде, жидком аммиаке, спиртах. Необходимые для образования водородных связей атомы кислорода и азота содержат все углеводы, белки, нуклеиновые кислоты. Известно, например, что глюкоза, фруктоза и сахароза прекрасно растворимы в воде. Не последнюю роль в этом играют водородные связи, образующиеся в растворе между молекулами воды и многочисленными OH-группами углеводов.

 

7)

СТРУКТУРНАЯ ИЗОМЕРИЯ - один из видов изомерии химических соединений. Обусловлена различиями в порядке расположения атомов в молекуле. Примеры: нормальный бутан CH3CH2CH2CH3 и изобутан (CH3)2СHCH3, этиловый спирт CH3CH2OH и диметиловый эфир CH3OCH3. Особый случай структурной изомерии - таутомерия.

Изомерия химических соединений, явление, заключающееся в существовании веществ, одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и вследствие этого по физическим и химическим свойствам. Такие вещества называются изомерами.

И. открыта в 1823 Ю. Либихом, показавшим, что серебряная соль гремучей кислоты Ag — О — N = C и изоцианат серебра Ag — N = C = O имеют один и тот же состав, но совершенно разные свойства. Термин "И." предложен в 1830 И. Берцелиусом. Особенно распространена И. среди органических соединений. Явление изомерии было успешно объяснено теорией химического строения. Бутлеровым.

Различают два основных вида И.: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связей между атомами в молекуле; стереоизомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.

Структурная И. подразделяется на несколько разновидностей. И. скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Так, может существовать только один нециклический насыщенный углеводород с тремя атомами С — пропан (I). Углеводородов такого же типа с четырьмя атомами С может быть уже два: н-бутан (II) и изобутан (III), а с пятью атомами С — три: н-пентан (IV), изопентан (V) и неопентан (VI):

Для углеводорода C20H42 возможно уже 366 319 изомеров.

И. положения обусловлена различным положением какой-либо реакционноспособной группы (функциональной группы, заместителя) при одинаковом углеродном скелете молекул. Так, пропану соответствуют два изомерных спирта: н-пропиловый (VII) и изопропиловый (VIII):

Важную роль играет И. положения у соединений ароматического ряда, так как положение заместителей в бензольном ядре — один из главных факторов, определяющих реакционную способность вещества. Например, о-динитробензол (IX) и n-динитробензол (X) легко реагируют с аммиаком, тогда как м-динитробензол (XI) в реакцию с NH3 не вступает.

8) (геометрическая изомерия)

π-диастереомеры, называемые также геометрическими изомерами, отличаются друг от друга различным пространственным расположением заместителей относительно плоскости двойной связи (чаще всего С=С и С=N) или цикла. К ним относятся, например, малеиновая и фумаровая кислоты (формулы XIV и XV соответственно), (Е)- и (Z)-бензальдоксимы (XVI и XVII), цис- и транс-1,2-диметилциклопентаны (XVIII и XIX).

 

9) Опти́ческая изомери́я (энантиомерия) — разновидность пространственной изомерии, являющаяся прямым следствием хиральности молекул, проявляется способностью некоторых веществ поворачивать плоскость поляризованного луча в противоположные стороны. Оптическая изомерия свойственна молекулам органических веществ, не имеющим плоскости симметрии, которые относятся друг к другу как предмет к своему зеркальному отражению.

 

12) Таутомерия (от греч. tautós — тот же самый и méros — доля, часть), быстрая обратимая структурная изомеризация; способные к Т. вещества при установившемся равновесии представляют собой смеси двух (или нескольких) взаимопревращающихся изомеров — таутомеров (см. Изомерия). Наиболее распространена прототропная триадная Т. (миграция протона между крайними атомами триады — системы трёх атомов, два из которых связаны двойной связью; миграция сопровождается перемещением двойной связи). К этому виду Т. относятся кето-енольная (а), имино-енаминная (б), амидная (в), в том числе лактим-лактамная (г), трёхуглеродная (д), кольчато-цепная (е) и некоторые др.:

К диадной прототропной Т. (миграция протона в системе двух атомов) относят Т. синильной кислоты, кислот и тиокислот фосфора (этот тип Т. сопряжён с изменением валентности одного из атомов диады):

Анионотропная Т. (миграция отрицательно заряженного атома или группы атомов) наблюдается в ряду аллилгало-генидов, аллиловых спиртов и их производных:

В таутомерных отношениях могут находиться также валентные изомеры, то есть изомеры, превращающиеся друг в друга путём перераспределения валентностей между атомами скелета молекулы, без миграции заместителей, например циклооктатриен существует в равновесии с бициклическим изомером:

В некоторых случаях таутомеры могут быть выделены в индивидуальном состоянии. В большинстве случаев (HCN и т. п.) наличие таутомеров доказывается спектральными методами.

 

Многие вещества образуют два ряда производных, соответствующих двум возможным таутомерным формам, что, однако, как правило, связано не с Т., а с двойственной реакционной способностью (см. Мезомерия). Т. предполагает реальное существование таутомеров, что в каждом случае требует доказательства.

15) Ароматичность (от греч. aroma, род. падеж aromatos - благовоние), понятие, характеризующее совокупность структурных, энергетических свойств и особенностей реакционной способности циклических структур с системой сопряженных связей. Термин введен Ф. А. Кекуле (1865) для описания свойств соединений, структурно близких к бензолу - родоначальнику класса ароматических соединении.

 

К числу наиболее важных признаков ароматичности принадлежит склонность ароматических соединений к замещению, сохраняющему систему сопряженных связей в цикле, а не к присоединению, разрушающему эту систему. Кроме бензола и его производных, такие реакции характерны для полициклических ароматических углеводородов (напр., нафталина, антрацена, фенантрена и их производных), а также для изоэлектронных им сопряженных гетероциклических соединений. Известно, однако, немало соединений (азулен, фульвен и др.), которые также легко вступают в реакции замещения, но не обладают всеми другими признаками ароматичности.

 

Реакционная способность не может служить точной характеристикой ароматичности еще и потому, что она отражает свойства не только основного состояния данного соединения, но и переходного состояния (активировованного комплекса) реакции, в которую это соединение вступает. Поэтому более строгие критерии ароматичности связаны с анализом физических свойств основных электронных состояний циклических сопряженных структур. Главная трудность состоит в том, что ароматичности не является экспериментально определяемой характеристикой. Поэтому не существует однозначного критерия для установления степени ароматичности, т.е. степени подобия свойствам бензола. Ниже рассмотрены наиболее важные признаки ароматичности.

 

Строение электронной оболочки ароматических систем.

 

Тенденция бензола и его производных к сохранению структуры сопряженного кольца в различных превращениях означает повышенную термодинамическую и кинетическую устойчивость этого структурного фрагмента. Стабилизация (понижение электронной энергии) молекулы или иона. обладающих циклической структурой, достигается при полном заполнении электронами всех связывающих молекулярных орбиталей и вакантности несвязывающих и антисвязывающих орбиталей. Выполнение этих условий достигается, когда общее число электронов в циклическом полиене равно (4л + 2), где п = = 0,1,2... (правило Хюккеля).

 

Это правило объясняет устойчивость бензола (ф-ла I) и циклопентадиенильного аниона (II; п = 1). Оно позволило правильно предсказать устойчивость циклопропенильного (III; п = 0) и циклогептатриенильного (IV; п = 1) катионов. Ввиду подобия электронных оболочек соединений II-IV и бензола они, как и высшие циклические полиены - [10], [14], [18]аннулены (V-VII), рассматриваются как ароматические системы.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: