Методы измерений. Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками и в необходимом виде

Классификация измерений

Качество измерений.

Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками и в необходимом виде.

Качество измерений характеризуется такими показателями, как точность, правильность, достоверность, сходимость и воспроизводимость результатов.

Точность измерения – качество измерения, отражающее близость его результата к истинному значению измеряемой величины. Количественно точность может быть выражена величиной, обратной относительной погрешности, взятой по модулю.

Правильность измерений – это характеристика качества измерений, отражающая близость к нулю систематической погрешности результатов измерений.

Достоверность измерений определяется степенью доверия к результату измерения и характеризуется вероятностью того, что истинное значение измеряемой величины находится в указанных пределах.

Сходимость результата измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами т средствами измерений и в одних и тех же условиях.

Воспроизводимость результатов измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами измерений, разными операторами, но приведенных к одним и тем же условиям.

Измерения классифицируются по нескольким признакам.

а) По зависимости измеряемой величины от времени:

· статические (измеряемая величина остается постоянной во времени в процессе измерения);

· динамические (измеряемая величина изменяется в процессе измерения).

б) По сложившимся совокупностям измеряемых величин:

· электрические;

· механические;

· теплотехнические;

· физико-химические;

· радиационные;

· и т.д.

в) По условиям, определяющим точность результата:

· измерения максимально возможной точности, достижимой при современном уровне техники. Это измерения, связанные с созданием и воспроизведением эталонов, а также измерения универсальных физических констант;

· контрольно-поверочные измерения, погрешности которых не должны превышать заданного значения. Такие измерения осуществляются государственными и ведомственными метрологическими службами;

· технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Технические измерения являются наиболее распространенными и выполняются во всех отраслях хозяйства и науки. К ним, в частности, относятся и технологические измерения.

г) По числу измерений (наблюдений), выполняемых для получения результата:

· измерения с однократным наблюдением (обыкновенные);

· измерения с многократными наблюдениями (статистические).

Под наблюдением при измерении в данном случае понимают экспериментальную операцию, выполняемую в процессе измерения, в результате которой получают одно значение из группы значений величины, подлежащих совместной обработке для получения результатов измерения.

д) По способу получения результата (по виду уравнения измерения):

· прямые измерения – измерения, при которых искомое значение величины находят непосредственно из опытных данных. В процессе прямого измерения объект измерения приводится во взаимодействие со средством измерений и по показаниям последнего, отсчитывают значение измеряемой величины или указанные измерения умножаются на постоянный коэффициент для определения значения измеряемой величины. Математически прямое измерение можно описать выражением (2). Примером прямых измерений могут служить: измерение длины линейкой, массы с помощью весов, температуры термометром и т.д. К прямым измерениям относят измерения подавляющего большинства параметров химико-технологических процессов.

· косвенные измерения - измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Примером косвенных измерений могут служить измерения: плотности однородного тела по его массе и объему, электрического сопротивления по падению напряжения и силе тока и т.д.

В современных микропроцессорных измерительных приборах очень часто вычисления искомой измеряемой величины производятся “внутри” прибора. Измерения, проводимые такого рода средствами измерений, относятся к прямым измерениям. К косвенным измерениям относятся только такие измерения, при которых расчет осуществляется в ручную или автоматически, но после получения результатов прямых измерений. При этом может быть учтена отдельно погрешность расчета.

· совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величины находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Пример. Нахождение сопротивлений двух резисторов по результатам измерения их сопротивлений при последовательном и параллельном включении резисторов.

R1=R1+R2

R2= (R1*R2)/ (R1+R2)

· совместные измерения – проводимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними.

Например. При определении зависимости сопротивления резистора от температуры используют известное выражение:

,

где Rt – сопротивление резистора при некоторой температуре t; R20 – сопротивление резистора при температуре 20оС; α и β – температурные коэффициенты. Искомые значения R20, α и β находят решением системы трех уравнений, составленной для трех различных значений температуры. Здесь сопротивление Rt и температура t измеряются прямым способом.

Кроме приведенных выше признаков классификации измерений для конкретных случаев при необходимости могут быть использованы и другие. Например, измерения можно подразделить в зависимости от места выполнения на лабораторные и промышленные; в зависимости от процедуры выполнения во времени – на непрерывные и периодические; в зависимости от формы представления результатов – на абсолютные и относительные и т.д.

Прямые измерения, являясь самостоятельными и наиболее распространенными, в то же время служат основой для более сложных видов измерений (косвенных, совокупных и совместных). В связи с этим методы прямых измерений являются общими для всех видов измерений и в дальнейшим будут называться просто методами измерений.

С учетом того, что метод измерений представляет собой совокупность приемов использования принципов и средств измерений, различают два метода измерений:

- метод непосредственной оценки;

- метод сравнения с мерой (мера -средство измерений, предназначенная для воспроизведения физической величины заданного размера).

Классификационным признаком в таком разделении методов является наличие или отсутствие при измерениях меры.

Метод непосредственной оценки (отсчета) – метод измерения, в котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия (прибор прямого действия – измерительный прибор, в котором сигнал измерительной информации движется в одном направлении, а именно с входа на выход).

Метод сравнения с мерой – метод измерения, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Методы сравнения в зависимости от наличия или отсутствия при сравнении разности между измеряемой величиной и величиной, воспроизводимой мерой, подразделяют на нулевой и дифференциальный.

Нулевой метод – это метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (прибор сравнения, или компаратор, - измерительный прибор, предназначенный для сравнения измеряемой величины с величиной, значение которой известно).

Дифференциальный метод – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность между измеряемой величиной и известной, воспроизводимой мерой.

Как в нулевом, так и в дифференциальном методе могут быть выделены методы противопоставления, замещения и совпадения.

Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

Метод замещения – метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.

Метод совпадения – метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Для пояснения сущности приведенных определений обратимся к примерам реализации методов измерений.

Метод непосредственной оценки с отчетом показаний по шкале прибора характеризуется тем, что лицу, осуществляющему измерение, не требуется каких либо вычислений, кроме умножения показаний прибора на некоторую постоянную величину, соответствующему данному прибору. Примером данного метода измерений может служить взвешивание груза X на пружинных весах (рис.1). Масса груза здесь определяется на основе измерительного преобразования по значению δ деформации пружины.

Процесс измерения по методу непосредственной оценки характеризуется быстротой, что делает его часто незаметным для практического использования. Однако точность измерения обычно оказывается невысокой из-за воздействия влияющих величин и необходимости градуировки шкал приборов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: