Парная регрессия и метод наименьших квадратов

Будем предполагать в рамках модели (2.2) линейную зависимость между двумя переменными Y и X. Т.е. имеем модель парной регрессии в виде:

Yi = a + bXi + ui, i =1,…, n.

а. E ui =0, i =1,…, n.

б.

в. X 1, …, X n – неслучайные величины.

Предположим, что имеется выборка значений Y и X.

Обозначим арифметические средние (выборочные математические ожидания) для переменных X и Y:

.

Запишем уравнение оцениваемой линии в виде:

, (2.6)

где и - оценки неизвестных параметров a и b, а - ордината этой линии.

Пусть (Xi, Yi) одна из пар наблюдений. Тогда отклонение этой точки (см. рис. 2.1) от оцениваемой линии будет равно e i= Y i - .

Принцип метода наименьших квадратов (МНК) заключается в выборе таких оценок и , для которых сумма квадратов отклонений для всех точек становится минимальной.

Y

       
   
 
 


X

Рис. 2.1. Иллюстрация принципа МНК

Необходимым условием для этого служит обращение в нуль частных производных функционала:

по каждому из параметров. Имеем:

Упростив последние равенства, получим стандартную форму нормальных уравнений, решение которых дает искомые оценки параметров:

(2.7)

Из (2.7) получаем:

(2.8)

Пример. Для иллюстрации вычислений при отыскании зависимости с помощью метода наименьших квадратов рассмотрим пример (табл. 2.1).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: