Приведение к линейному виду регрессий, нелинейных по объясняющим переменным

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени

у = а0 + а1 х + а2 х2 + ε

заменяя переменные х1 = х, х2 = х2, получим двухфакторное уравнение линейной регрессии:

у = а0 + а1 х1 + а2 х2 + ε

для оценки параметров которого, как будет показано далее, используется МНК.

Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез.

Среди класса нелинейных функций, параметры которых без особых затруднений оцениваются МНК, следует назвать хорошо известную в эконометрике равностороннюю гиперболу

Для равносторонней гиперболы такого вида, заменив на z, получим линейное уравнение регрессии y = a + bz +ε оценка параметров которого может быть дана МНК.

Она может быть использована не только для характеристики связи удельных расходов сырья,материалов,топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота, т.е. на микроуровне, но и на макроуровне. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у.

В отдельных случаях может использоваться и нелинейная модель вида

так называемая обратная модель, являющаяся разновидностью гиперболы Но, если в равносторонней гиперболе преобразованию подвергается объясняющая переменная z = 1 /x и y = а + bz + ε, то для получения линейной формы зависимости в обратной модели преобразовывается у, а именно: z =1 /y и z = a + bx +ε.

В результате обратная модель оказывается внутренне нелинейной и требование МНК выполняется не для фактических значений признака у, а для их обратных величин 1 , а именно

следовательно полученная методом наименьших квадратов оценка уже не будет эффективной.

Приведение к линейному виду регрессий, нелинейных по параметрам

Данный класс нелинейных моделей подразделяется на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные.

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду.

Если нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:

y = axb ε

где у – спрашиваемое количество;

х – цена;

ε – случайная ошибка.

Данная модель нелинейна относительно оцениваемых пaраметров, ибо включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логарифмирование данного уравнения по основанию е приводит его к линейному виду:

lп у = lп а + b ln x + ln ε.

Соответственно оценки параметров а и b могут быть найдены МНК.

Если же модель представить в виде y = axb ε, то она становится внутренне нелинейной, ибо ее невозможно превратить в линейный вид. Внутренне нелинейной будет и модель вида — у = а + c + ε, ибо это уравнение не может быть преобразовано в уравнение, линейное по коэффициентам.

В специальных исследованиях по регрессионному анализу часто к нелинейным относят модели, только внутренне нелинейные по оцениваемым параметрам, а все другие модели, которые внешне нелинейны, но путем преобразований параметров могут быть приведены к линейному виду, относятся к классу линейных моделей.

В этом плане к линейным относят, например, экспоненциальную модель y = еa+bх ε, ибо логарифмируя ее по натуральному основанию, получим линейную форму модели

ln у = а + b х +lnε.

Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрических исследованиях очень широко используется степенная функция y = axb ε.

Связано это с тем, что параметр b в ней имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям.

Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия

,

то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т. е. lп у, 1 .

Так, в степенной функции y = axb ε МНК применяется к преобразованному уравнению lп у = lnа + x ln b.

Это значит, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах:

Вследствие этого оценки параметров для линеаризуемых функций МНК оказываются несколько смещенными. При исследовании взаимосвязей среди функций, использующих ln у, в эконометрике преобладают степенные зависимости – это и кривые спроса и предложения, и кривые Энгеля, и производственные функции, и кривые освоения для характеристики связи между трудоемкостью продукции и масштабами производства в период освоения выпуска нового вида изделий, и зависимость валового национального дохода от уровня занятости.

 

10. Функциональная спецификация модели парной регрессии .(Вопрос4)

Функциональными называются связи, при которых наличие взаимосвязи между двумя переменными, означает, что любому заданному значению одной переменной отвечает лишь одно значение второй.

Для них характерно то, что изменения результативного признака в целом обусловлены действием факторного признака х: Y=f(X)

Особенность функциональной связи: она проявляется с одинаковой силой для каждой единицы совокупности, которая изучается.

Поэтому, установив при изучении любой единицы совокупности ту или другую закономерность, ее можно распространять как на каждую единицу, так и на всю совокупность.

Любое эконометрическое исследование начинается со спецификации модели, т.е. с формулировки (выбора) вида модели, исходя из соответствующей теории связи между переменными.

Линейная регрессия: .

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: