Диаграмма состояния Ni - Si. Фазовые превращения в системе Ni-Si

 

На рис.1.1 приведена фазовая диаграмма состояния Ni-Si [4].

В системе определены следующие фазы: β1, β3, γ, δ, θ, έ, NiSi и NiSi2. Из них три фазы γ, θ и NiSi плавятся конгруэнтно при 1242, 1306 и 992 0С соответственно. Фазы β3, δ и βNiSi2 образуются по перитектическим реакциям при 1170, 1255 и 993 0С соответственно. В твердом состоянии по перитектоидным реакциям образуются фазы β1 (1035 0С) и έ (845 0С). Три фазы имеют высоко - и низкотемпературные модификации: β3↔ β2 (1115 0С), έ↔ε (830 0С) и βNiSi2↔αNiSi2 (981 0С). Максимальная растворимость Si в Ni достигает 15,8 % (ат.) при 1143 0С (эвтектическая температура). Кристаллическая структура соединений приведена в табл.1.2 [4]

 

Таблица 1.2.

Кристаллическая структура соединений системы Ni-Si

Соединение

Прототип

Параметры решетки, нм

a b c
β (Ni3Si) AuCu3 0,350
β2*1  (GePt3?) 0,697 0,625 0,507
β3*2  (GePt3?) 0,704 0,626 0,508
δ (Ni2Si) Co2Si 0,706 0,499 0,372
θ*3 0,3805 0,489
ε (Ni3Si2) *4 1,2229 1,0805 0,6924
NiSi MnP 0,562 0,518 0,334
αNiSi2 CaF2 0,546

*1β=48,74о

*2β=48,84о

*4Ромбическая сингония


Рис.1.1 Диаграмма состояния системы Ni - Si.

 

1.3 Термодинамическое моделирование свойств твердых металлических растворов. Обобщенная теория "регулярных" растворов

 

Регулярный раствор образуется из компонентов с выделением или поглощением тепла, а энтропия смешения его такая же, как и в совершенном растворе. Проблема аналитического представления концентрационной и температурной зависимости термодинамических свойств сводится к поиску соответствующего выражения для избыточной энергии Гиббса GE [5]. Обычно в качестве нулевого приближения к теории реальных растворов применяется модель идеального раствора, где GE=0. В настоящей модели за нулевое приближение принята теория регулярных растворов.

Понятие "регулярный раствор" включает в себя как частные случаи понятия "идеальный" и "предельно разбавленный" раствор, а закон граничной регулярности, согласно которому любой раствор можно считать регулярным до определенного предела, справедлив для более широкого диапазона концентраций, чем законы Рауля и Генри [5].

Для регулярного раствора:

 

, (1.1)

 

где xi и xj - мольные доли компонентов,

Qij - энергия взаимообмена (смешения).

В рамках модели строго регулярного раствора энергии взаимообмена являются константами. В реальных системах энергии взаимообмена (как эмпирические параметры модели) зависят от состава и температуры.

Для субрегулярных растворов:

 

; (1.2)

 

Для квазирегулярных растворов:

 

; (1.3)

 

где:  и  - соответственно теплота и избыточная энтропия смешения компонентов. Выражения (1.2) и (1.3), очевидно, можно рассматривать как частные случаи неизвестной функции для концентрационной и температурной зависимостей энергии смешения компонентов, получаемой путем разложения  и  в ряд Тейлора. Если ограничиться несколькими первыми членами ряда:

 

; (1.4)

 

то получится представление функции  полиномом. В свою очередь, каждый из параметров , , ,…,  может зависеть от температуры:

 

; (1.5)

 

Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов - той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.

Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы. Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:

 

; (1.6)

 

где  и  - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;

 - параметр, учитывающий отклонение от "регулярности".

Умножив части уравнения (1.6) на общее число молей  компонентов в растворе, получим избыточную энергию Гиббса  произвольного количества фазы. Откуда:

 

 (1.7)

 

Активности компонентов двойной системы:

 

; (1.8)

; (1.9)

 

Обобщенная теория "регулярных" растворов позволяет успешно описать термодинамические свойства металлических, неметаллических и смешанных систем [5].

сплав кремний никель интерметаллид





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: