Уравнения и схема замещения трансформатора без ферромагнитного сердечника

Трансформатор представляет собой аппарат, передающий энергию из одной цепи в другую посредством электромагнитной индукции. Он применяется для различных целей, но чаще всего предназначается для преобразования величин переменных напряжений и токов. Трансформатор состоит из двух или нескольких индуктивно связанных обмоток, насаженных на общий сердечник.

На рис. 3.8 активные сопротивления обмоток условно вынесены и изображены отдельно. Обмотка трансформатора, присоединяемая к источнику питания, называется первичной, а обмотка, к которой подключается нагрузка – вторичной. При заданной полярности зажимов обмоток трансформатора на рис. 3.8 токи направлены встречно, что не имеет принципиального значения.

Рис. 3.8. Электрические элементы трансформатора

Уравнения трансформатора в дифференциальной форме:

(3.16)

В комплексной форме записи:

(3.17)

Первичные и вторичные обмотки имеют магнитную связь. На практике при расчетах удобнее заменить эту магнитную связь на электрическую.

.(3.18)

Последние уравнения являются контурными для следующей схемы (рис. 3.8).

Рис. 3.8. Схема замещения трансформатора

Эта схема может рассматриваться в качестве схемы замещения трансформатора без ферромагнитного сердечника. В схеме замещения, в отличие от предыдущей, первичная и вторичная цепи трансформатора связаны не индуктивно, а электрически. Входящие в эту схему разности L1 – M и L2 – M имеют физический смысл только при одинаковом числе витков W1 и W2. В этом случае они представляют собой индуктивности рассеяния Ls1 и Ls2 обмоток трансформатора.

Для изображения таким образом трансформатора с разным чисел витков обмоток осуществляют приведение трансформатора. Приведение заключается в том, что напряжение U2 и ток I2 заменяются величинами, приведенными к первичной обмотке: напряжение U2 умножается на n, а ток I2 делится на n, где n = W1/W2 – отношение чисел витков, называемое коэффициентом трансформации. Внесем изменения в (3.17)

(3.19)

Схема замещения приведенного трансформатора представлена на рис. 3.9.

Уравнения (3.19) можно преобразовать к такому виду, чтобы они стали контурными для схемы на рис. 3.9:

Рис. 3.9. Схема замещения приведенного трансформатора

(3.20)

Приведенная схема замещения трансформатора содержит индуктивность в поперечной ветви, которую называют ветвью намагничивания. Намагничивающая сила, определяющая общий магнитный поток, который пронизывает обмотки W1 и W2, при встречном направлении токов равна

. (3.21)

Ток , проходящий через ветвь намагничивания, называется намагничивающим током трансформатора. Построим векторную диаграмму приведенного трансформатора (рис. 3.10).

При построении диаграммы в качестве исходного вектора принят приведенный вторичный ток. Падение напряжения от приведенного вторичного тока I2/n в приведенном вторичном сопротивлении R2n2 и индуктивном сопротивлении рассеяния ωLs2 n2 вторичной обмотки складываются с приведенным вторичным напряжением nU2, которое опережает ток I0/n на угол φ2. Полученное напряжение равно падению напряжения в индуктивном сопротивлении ветви намагничивания jωnM(I1 – I2/n). Ток намагничивания отстает от напряжения на угол 900. Первичный ток находится как геометрическая сумма токов I2/n и (I1 – I2/n). Падения напряжения от тока I1 в R1 и ωLs1 геометрически складываются с напряжением на ветви намагничивания, образуя первичное напряжение.

Рис. 3.10. Векторная диаграмма приведенного трансформатора

Так как вторичные электрические величины U2 и I2 в последней схеме приведены к первичной обмотке, то данная схема приведенного трансформатора не эквивалентна исходной. Эквивалентной будет так называемая схема идеального трансформатора, у которого при любых условиях отношение U1/U2 равно отношению I2/I1 = n. Идеальный трансформатор не имеет потерь энергии и при разомкнутой вторичной обмотке ток через его первичную обмотку не проходит. Реально таких трансформаторов нет, но по свойствам к нему близок трансформатор с коэффициентом связи примерно равным единице и со столь большим числом витков, что сопротивление практически равно бесконечности.

11.Входное
и вносимое сопротивления трансформатора.

 

Если нагрузка Zн присоединена к источнику через трансформатор, то

.

Вторичный ток

.

Сопротивление на входных зажимах трансформатора

.

Третье слагаемое в правой части последнего уравнения представляет собой комплексное сопротивление, вносимое из вторичной цепи в первичную. Эквивалентная схема замещения показана на рис. 3.11.

Рис. 3.11. Эквивалентная схема трансформатора

В зависимости от характера сопротивления нагрузки мнимая часть вносимого сопротивления может быть больше или меньше нуля.

В случае идеального трансформатора

.

Идеальный трансформатор изменяет сопротивление нагрузки пропорционально n2 без изменения его угла. Это свойство используется, когда необходимо выровнять сопротивление источника и нагрузки (для увеличения мощности источника)

,

где Z1вх – требуемая величина сопротивления.

 

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: