Сравнение существующих методов

В этом пункте рассмотрены различные подходы к построению средних линий и их воздействие на различные свойства, описанные в пункте 2.2.

Гомотопность

Алгоритмы утоньшения обеспечивают гомотопность, поскольку удаляются только те воксели, которые не меняют топологию объектов.

Поскольку методы, основанные на дистанционных картах, не выделяют скелет напрямую, сохранение топологии зависит от последующих шагов – обрезки и связывания. Очевидно, что алгоритмы, основанные на минимальных остовых деревьях не сохраняют топологию, потому что они не могут создавать петель.

Средние линии, построенные алгоритмами, основанными на общеполевых методах, могут быть несвязными даже для односвязных объектов [15], так как этот класс алгоритмов сильно зависит от разрешения изображений, а также от погрешностей при вычислениях.

 

Инвариантность при изометрических преобразованиях

Направленные методы утоньшения чувствительны к ориентации объекта. Окончательный результат (конечные точки, число ветвей и их местоположение) зависит от порядка, в котором обработаны различные направления. Дистанционные карты, диаграммы Вороного и методы, основанные на характеристиках полей, не зависят от ориентации объекта.

Во всех случаях, затрагивающих дискретные представления объектов, конечное представление воксельной сетки допускает небольшую погрешность при преобразовании объектов. В результате даже при том, что алгоритмы выделения средних линий не чувствительны к ориентации, сами входные данные уже несут некоторую погрешность из-за преобразования. Эта погрешность обнаруживается на границе преобразованного объекта, и этот эффект подобен эффекту поверхностного шума.

 

Восстанавливаемость

Средняя линия или средняя поверхность трехмерного объекта захватывает локальное симметричное представление в объекте через различные типы элементов: участки поверхности в скелете представляют симметрические пластинчатые области исходной формы, в то время как отдельные кривые в скелете соответствуют цилиндрическим (трубчатым) областям формы. Очевидно, что независимо от используемого метода выделения, полная и точная реконструкция исходного объекта не возможна при наличии информации, сохраненной в одной только средней линии. Так как скелет содержит только сегменты кривой, плоские части объекта не могут быть восстановлены от него.

Цилиндрические формы (то есть, формы, которые могут быть точно представлены обобщенными цилиндрами), представляют специальный класс объектов, которые могут быть точно восстановлены от одного только скелета. Общие формы могут только быть приближены обобщенной цилиндрической реконструкцией. Ясно, что более плотный скелет кривой приведет к более точному результату. При восстановлении с помощью подхода наращивания шаров [31] необходима информация дистанционной карты для определения радиуса шара, который будет выращен из каждого вокселя скелета. В этом отношении, методы, основанные на дистанционных картах, имеют преимущество перед другими методами, потому что эта информация доступна.

Толщина

Алгоритмы утоньшения могут непосредственно построить тонкий скелет (при использовании утоньшающих шаблонов). Параллельные алгоритмы утончения, которые удаляют все простые воксели сразу, возможно, не в состоянии достигнуть соответствующего представления из-за ограничений топологии. На рисунке 4 имеем прямоугольник, ширина которого четное число вокселей. На последнем шаге процесса утоньшения средняя линия будет шириной в 2 вокселя. Хотя все воксели этой кривой «простые» точки, удаляя их полностью, мы бы удалили всю среднюю линию. На данном этапе никакие другие «простые» точки не могут быть удалены, и скелет не представлен в 1D. У направленных методов утончения предусмотрена эта проблема: один ряд вокселей в средней линии будет удален, а второй ряд будет сохранен в последующих шагах.

Методы, основанные на дистанционных картах и диаграммах Вороного не представляют скелет в 1D. Для обоих методов необходима постобработка по уменьшению количества вокселей [39].

 

Центрированность

Алгоритмы утоньшения и методы полевых характеристик не гарантируют центрированность. В случае направленного утоньшения, центрированность зависит от порядка применения различных направлений. В случае общеполевых методов, которые рассматривают области, отличные от ближайших точек границы, центрированность также не гарантируется.

Методы, использующие дистанционные карты могут лучше достигать центрированности, потому что информация о центрах (максимальных шаров) включена в дистанционную карту.

Геометрические методы напрямую вычисляют контактные точки (точки, которых касаются границы максимальных вписанных сфер) также могут достигать центрированности.

Методы, основанные на диаграммах Вороного, зависят от выбора плотности поверхности объекта: плотный объект дает более отцентрированную среднюю линию, но увеличивает время работы. Проблемы с центрированностью возникают [39] особенно в регионах, где топология объекта изменяется между последовательными множествами уровней. Это также зависит от разрешения (расстояние между двумя последовательными множествами уровней).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: