Характеристика сил связи в структуре горной породы

ЛЕКЦИЯ 1

Скважиной называется горная выработка цилиндрической формы, сооружаемая с помощью специальных инструментов без доступа человека. Основной геометрической особенностью скважины является соотношение ее диаметра D и длины L:

                                               D / L << 1.

Горные породы стенки и забоя скважины испытывают различные нагрузки: если порода, слагающая стенку скважины, подвержена со стороны бурового раствора действию гидростатической и гидродинамической нагрузок, то на забое горная порода дополнительно к этому претерпевает и динамическое механическое нагружение со стороны породоразрушающего инструмента. В последнем случае породоразрушающие элементы вооружения (зубцы шарошечного долота, например) не только наносят удар по забою, в результате которого в глубь породы распространяется волна сжатия, отражающаяся от многочисленных адгезионных границ, но и скользят по забою, внедряются в него, создавая под пятном контакта сложное напряженное состояние. Горная порода забоя скважины при этом приобретает как упругую, так и остаточную деформации.

Деформирование горной породы при различных временах действия механических напряжений и развитие разрушения происходят различно.

   ГОРНАЯ ПОРОДА - ОБЪЕКТ РАЗРУШЕНИЯ

Модель горной породы необходимо создавать в соответствии с изучаемой проблемой, т.е. сохранять в модели только те свойства горной породы, которые имеют непосредственное отношение к исследуемому вопросу. Так как нас интересует механическое разрушение горных пород, то и обращать внимание, определяя понятие «горная порода», мы будем на то, что оказывает определяющее влияние на развитие разрушения.

Горная порода — это гетерогенная система, состоящая из частиц твердой фазы, представленной минералами-диэлектриками, -полупроводниками, -проводниками, жидкой фазы, создающей токопроводящие каналы между частицами твердой, жидкой и газовой фаз, находящихся в порах и полостях трещин.

 

Характеристика сил связи в структуре горной породы

 

В горных породах различают силовые взаимодействия как внутри фаз, так и между фазами. Эти взаимодействия между зернами твердой компоненты и внутри них определяют устойчивость горной породы к механическим воздействиям: сопротивляемость пород разрушению.

Между компонентами горной породы действуют следующие силы: силы связи химической природы, молекулярные силы, ионно-электростатические силы, капил-лярные и магнитные силы.

1) Силы связи химической природы. Эти силы обусловлены электрическим воздействием между атомами и могут быть ионными и ковалентными. Энергия связи (количество энергии, выделяющейся при образовании данной связи между атомами) сил химической природы достигает 200 – 1200 Дж/моль. Радиус эффективного действия равен ( 3-4 ). 10-10 м, т.е. эти силы являются близкодействующими.

К связям химической природы относят и водородную связь. Энергия этой связи достигает 40 Дж/моль.

2) Молекулярные силы. Эти силы обусловлены следующими видами взаимодействия молекул:

- ориентационными, возникающими между полярными молекулами;

- индукционными, возникающими вследствие поляризации неполярных молекул в электрическом поле, создаваемом полярными дипольными молекулами;

- дисперсионными, возникающими при взаимодействии электронов молекул.

Молекулярные силы являются дальнодействующими: действуют на расстоянии нескольких тысяч ангстрем. Энергия связи этих сил достигает 0,4- 12,0 Дж/моль.

При расстояниях, меньших (1¸2).10-10 м, молекулярные силы из притягивающих становятся отталкивающими. Это вызвано взаимодействием электронных оболочек атомов.

3) Электростатические силы. Эти силы возникают вследствие появления, по той или иной причине, на поверхности минералов электрических зарядов, взаимодействующих между собой по закону Кулона. Наиболее характерны эти силы для глинистой горной породы: представляют собой взаимодействие катионов-компенсаторов, находящихся в жидкой фазе, и заряженной поверхности глинистых минералов.

4) Капиллярные силы. Своим происхождением эти силы обязаны капиллярному давлению, которое возникает из-за искривления поверхности жидкости. Возникает капиллярное давление на границе раздела жидкой и газообразной компонент горной породы.

5) Магнитные силы. Эти силы возникают в горной породе, которая содержит ферромагнетики. Чаще всего эти силы возникают в глинистой горной породе при наличии в ней гематита, гетита, гидрометита, образующих на поверхности глинистых минералов тонкие пленки. Эти пленки обладают жестким магнитным моментом. Величина магнитных сил незначительна.

Перечисленные выше силы обеспечивают прочность адгезионного соединения разнородных минералов в структуре породы и когезионную прочность однородных минералов. Адгезия обеспечивает между двумя телами контакт определенной прочности благодаря физическим или химическим силам связи. Когезией, строго говоря, называют межатомное, межмолекулярное взаимодействие различной природы внутри отдельной фазы. Когезионным соединением является и соединение однородных тел. Следует, однако, иметь ввиду, что если поверхность соединяемых однородных тел загрязнена третьим телом (адсорбированные молекулы газа, пленка жидкости и пр.), то такое соединение следует считать адгезионным.

Разрыв адгезионного соединения, разрыв однородного тела определяют адгезионную и когезионную прочности, соответственно.

Работа когезии W к определяется затратами энергии на получение единицы площади свежей поверхности тела и равна удвоенной величине удельной свободной поверхностной энергии разрушаемого тела go:

W к = 2 go.

Появление цифры два в формуле связано с тем, что при разрыве тела возникают две свежие поверхности. Величину W к часто называют когезионной прочностью на разрыв.

Адгезионная прочность (работа адгезии) W а характеризует прочность адгезионного соединения и может быть выражена аналогичной по виду формулой

                                            W а = 2 go,

где go - работа, затраченная на получение единицы свежей поверхности адгезионного соединения.

   Классификация горных пород академика Сергеева Е.М.

В основе классификации лежит характер связи между частицами твердой фазы. Все горные породы по этому признаку делятся на два класса: скальные и дисперсные.

В классе скальных горных пород находятся породы, у которых химическая связь действует не только внутри зерен минералов, но и между зернами минералов. Это приводит к тому, что когезионная прочность минералов, входящих в состав скальной горной породы, не превосходит прочность адгезионной связи между минералами. Такие породы именуют связными. Они имеют большую прочность.

Влияние жидкостей на прочность скальных пород проявляется только в процессе их нагружения, когда жидкость либо проникает в глубь растущей трещины и оказывает влияние на разрыв связей в её вершине, либо оказывается защемленной в изолированных порах.

К классу скальных горных пород относятся метаморфические (гнейсы, сланцы, амфиболиты и др.), магматические (граниты, базальты, диориты, габбро, порфириты и др.), осадочные сцементированные породы (песчаники, известняки, доломиты, брекчия и др.).

Дисперсные горные породы имеют слабую адгезионную границу между зернами минералов. Это связано с тем, что на этой границе действует физический тип связи между минералами (магнитные, электростатические, капиллярные силы), а внутри минералов действуют силы химической природы. Дисперсные горные породы часто именуют слабосвязными. Горные породы этого класса теряют устойчивость и прочность при попадании в них воды вследствие ослабления физического типа связи между минералами. В классе дисперсных горных пород находятся осадочные несцементированные породы, глины, аргиллиты, глинистые песчаники.

   Твердая компонента горной породы

Твердая компонента горных пород состоит из минеральных частиц различной природы. Основное участие в строении твердого скелета горных пород принимают несколько десятков минералов, хотя общее их количество достигает 2000. Эти минералы получили название породообразующих. Породообразующие минералы имеют кристаллическое строение и делятся на следующие группы: первичные силикаты (кварц, полевые шпаты, оливин, пироксены и др.), в структуре которых преобладают ковалентные связи; простые соли (карбонаты, сульфаты, галоиды) с преобладанием в структуре ионных связей; глинистые минералы (каолинит, монтмориллонит, гидрослюда и др.) с несколькими видами связей; органическое вещество.

Силикаты являются главными породообразующими минералами магматических, метаморфических и большого числа осадочных горных пород. Силикаты являются диэлектриками. Среди осадочных горных пород широко распространены простые соли. Их основной особенностью является большая растворимость в воде. Это связано с ионным типом внутрикристаллических связей.

Глинистые минералы, образованные в процессе химического выветривания горных пород силикатной группы, отличаются высокой дисперсностью (линейный размер глинистого минерала —10-6 м и менее, удельная поверхность каолинита достигает 10 м2/г, а монтмориллонита —800 м2/г) и слоисто-ленточным строением. Но главнейшей особенностью глинистых минералов является их способность к электрическому заряжению своей поверхности в результате изоморфизма.

При гетеровалентном изоморфизме с поверхности глинистого минерала уходит четырехвалентный ион кремния Si +4, а на его место из окружающей среды может прийти любой другой ион с меньшей или большей валентностью. В этом случае и возникает нарушение электронейтральности глинистого минерала. Чаще всего на поверхности образуется отрицательный электрический заряд, т.е. на место иона кремния приходят ионы меньшей валентности (Al +3, Ba +2, Ca +2 и др.). Величина заряда определяется интенсивностью изоморфных замещений и валентностью замещающего иона. По величине структурного отрицательного заряда глинистые минералы располагаются в следующей последовательности:

каолинит < монтмориллонит < гидрослюда.

В естественных условиях залегания глинистой горной породы отрицательный заряд поверхности глинистых минералов нейтрализован катионами-компенсаторами, которые располагаются на внешней поверхности глинистой частицы: положительные катионы, с одной стороны, и отрицательные заряды глинистой частицы, с другой стороны, образуют двойной электрический слой. Двойной электрический слой состоит из адсорбционного и диффузионного слоев ионов.

Глинистый минерал вместе с возникшим двойным электрическим слоем образует мицеллу, размер которой значительно превосходит размер частицы глинистого минерала, являющегося ядром мицеллы. В результате мицелло-образования объем глинистой горной породы при увлажнении может увеличиться многократно, причем процесс набухания развивается во времени. Размер мицеллы определяется природой глинистого минерала: чем больше величина структурного отрицательного заряда на поверхности глинистого минерала и выше дисперсность, тем больше прирост объема.

В водной среде вокруг ядра возникает раствор с аномальными физическими свойствами: в адсорбционной части двойного электрического слоя, т.е. непосредственно около ядра мицеллы, образуется прочносвязанная вода. В диффузионном слое возникает связанная вода.

Образование связанной воды приводит к тому, что глинистая горная порода, будучи высокопористой (пористость доходит до 70 %), тем не менее, является водонепроницаемой. Фильтрация жидкости через поры, в которых находится связанная вода, возможна только при создании значительного перепада давления.

Образование двойного электрического слоя и развитие электрокинетических процессов обеспечивает значительное снижение прочности глинистой горной породы в водной среде, в этих условиях ярче проявляется склонность глин к текучему поведению. Способность глинистых минералов образовывать электрический заряд на своей поверхности приводит к тому, что даже 5 %‑го содержания глинистых минералов в дисперсной горной породе достаточно для того, чтобы эта порода проявляла свойства глины. Это характерно, в частности, для водонефтеносных песчаников.

Плотность горных пород в значительной степени определяется плотностью входящих в их состав минералов, жидкости и газа, находящихся в порах, величиной пористости. Плотность rт твердой компоненты большинства горных пород (масса единицы объема твердой фазы) составляет (2,2 ¸ 2,84).103 кг/м3. Масса единицы объема горной породы r (плотность) всегда меньше плотности rт минерального скелета породы. Такое отличие обусловлено наличием пор в горной породе. С увеличением содержания в породе тяжелых минералов плотность породы растет. Плотность сухой горной породы называется объемной массой.

Вес единицы объема твердой фазы горной породы называется удельным весом gув породы, а вес единицы объема сухой породы — объемным весом gов. Удельный вес горной породы и ее плотность связаны соотношением gув = g. rт, где g —ускорение свободного падения. Плотность горных пород определяет величину геостатического давления, действующего в точке, расположенной в литосфере на рассматриваемой глубине от дневной поверхности.

   Жидкая компонента горной породы

Жидкая фаза в горной породе представлена как полярной, так и неполярной жидкостями. В естественных условиях залегания горные породы обводнены поровыми, пластовыми, карстовыми и пр. водами, минерализованными различными солями и в различной концентрации. В качестве неполярной жидкости выступает нефть, газоконденсат. Физические свойства этих жидкостей различны. В качестве примера приведем некоторые физические свойства чистого керосина и дистиллированной воды при комнатной температуре (табл. 1).

 

Таблица 1. Сравнение физических свойств керосина и воды

Физические показатели  керосин  вода 
Дипольный момент,  m·1018, эл.-ст.ед.·см   0     1,84 
Относит.диэлектрич. проницаемость, e        2,0    81   
Поверхностное     натяжение,gж.10-3 дж/м2    26,8   72,7 
Плотность, r·103 кг/м3 0,82   1,0  
Электропроводность,    æ, См/м          10  10 
Вязкость, h·102, Па·с 1,5    1,0  

 

 

Нефть и вода, находящиеся в горной породе, имеют физические характеристики, отличающиеся от приведенных в табл.1. Но если для нефти эти изменения невелики, то для воды могут достигать больших значений. Например, электропроводность свободной воды в горной породе в значительной степени зависит от концентрации ионов в ней и изменяется в широком диапазоне: от 10-3 до 103 См/м.

Состояние воды в горной породе. Вода в горной породе в зависимости от температуры находится в твердом (лед), жидком и парообразном состояниях. Влияние льда на разрушение горной породы достаточно очевидно: при замерзании вода, находящаяся в трещинах горной породы, увеличивает занимаемый ею объём. Это и приводит к прорастанию трещин в горной породе, способствует её разупрочнению.

Так как при температуре 364 оС вода при любом давлении находится в парообразном состоянии, то нижняя граница распространения подземной воды располагается на глубине (10 ¸ 12) км. Это означает, что при бурении скважин до указанной глубины вода в жидком состоянии будет присутствовать в горной породе и оказывать воздействие на разрушение. Влияние воды на разрушение горной породы определяется в значительной степени напряженным состоянием, в котором находится горная порода, состоянием воды в ней, от взаимодействия в системе «вода-горная порода».

Состояние воды в горной породе в значительной степени определяется характером ее взаимодействия с твердой компонентой породы. По характеру этой связи воду в горной породе делят на два вида: свободную и связанную. Свободная вода представляет собой водные растворы продуктов растворения твердой компоненты горной породы. Различают гравитационную и иммобилизованную свободную воду. Гравитационная вода движется через толщу горных пород под действием силы тяжести. Иммобилизованная вода — это таже гравитационная (по своим физическим свойствам), но находится она в замкнутых, изолированных порах, ограничивающих перемещение воды.

В основе связывания воды лежат процессы физической адсорбции и капиллярной конденсации. Адсорбированная вода наиболее прочно удерживается на поверхности минералов под действием электростатических и молекулярных сил. Первый слой воды, непосредственно взаимодействующий с минералом, образует прочносвязанную воду. Физические свойства этой воды резко отличаются от свойств свободной воды, приведенных в табл. 1. Второй, третий и далее слои образуют слабосвязанную воду, физические свойства которой также отличаются (хотя и в меньшей степени) от свойств свободной воды. Соответственно этому и влияние воды на разрушение горной породы будет различным.

Прочносвязанная и связанная воды имеют следующие особенности физических характеристик (сравнительно с характеристиками свободной воды): дипольный момент воды не изменяется, значение относительной диэлектрической проницаемости приближается к величине диэлектрической проницаемости неполярной жидкости. Поверхностное натяжение незначительно снижается, плотность возрастает до максимального значения 1,84 г/см3, вязкость резко возрастает.

Содержание водяного пара в горной породе незначительно. При понижении температуры горных пород происходит конденсация пара на поверхности минералов, слагающих горную породу. При этом в ней появляется прочносвязанная, связанная и свободная вода.

Все количество воды, содержащееся в горной породе в ее естественном залегании, определяет величину естественной влажности породы. Она определяет эффективность влияния воды на разрушение горной породы: с ростом доли связанной воды в горной породе (в общем ее количестве в породе) влияние воды на разрушение снижается.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: