Расчет основных характеристик оптического волокна

Оптические кабели

Оптическим кабелем называется кабельное изделие, содержащее несколько оптических волокон, модулей или жгутов, заключенных в общую оболочку, поверх которой в зависимости от условий эксплуатации может быть наложен защитный покров.

Волоконно-оптические кабели по своему назначению, могут быть классифицированы на: магистральные, зоновые, городские, станционные (внутриобъектовые и монтажные). По конструкции оптические кабели классифицируются в зависимости от типа и взаимного расположения оптических волокон, способов их укладки, расположения силовых элементов, типа оболочки и защитных покровов.

Для любой системы связи важное значение имеет три фактора:

1. информационная емкость системы;

2. затухание, определяет длину регенерационного участка;

3. надежность, способность длительно функционировать в условиях воздействия окружающей среды;

Основные преимущества ВОЛС по сравнению с обычными кабельными линиями следующие:

- высокая помехоустойчивость, нечувствительность к внешним электромагнитным полям и практически отсутствие перекрестных помех между отдельными волокнами, уложенными вместе в кабель;

- значительно большая широкополосность;

- малая масса и габаритные размеры. Ожидается уменьшение массы и габаритов примерно в 10 раз и более по сравнению с существующими кабельными линиями связи при одинаковом числе каналов связи. Это приведет к уменьшению стоимости и времени прокладки оптического кабеля;

- полная электрическая изоляция между входом и выходом системы связи;

- малое затухание ОВ позволяет увеличить длину регенерационного участка до180-200км;

- потенциально низкая стоимость, производстве ВС не используются такие дорогостоящие материалы, как медь и свинец, запасы которых на земле ограничены; сравнительно малое энергопотребление при производстве единицы длины ОВ по сравнению с алюминием и медью.

Недостатки:

- некоторая зависимость параметров ВС, а особенно оболочек, от внешнего старения, сложность соединения ОК;

 - более жесткие требования к дополнительной деформации ОК (растяжение, изгиб, поперечная деформация).

 

1.3.1.1 Конструкция волоконно-оптических кабелей

ВОК должен содержать следующие элементы:

1 оптические волокна для передачи информации;

2 силовые упрочняющие элементы, воспринимающие основную нагрузку на разрыв;

3 армирующие элементы, предохраняющие оптические волокна от сжимающих усилий;

4 внутреннее заполнение каналов кабеля в виде стеклопластиковых или полиэтиленовых нитей;

5 защитные наружные оболочки, предохраняющие волокна от попадания влаги, наружных паров и т.д.

Существуют три основные конструкции ОК:

- ОК повивной скрутки;

- ОК с фигурным сердечником;

- ОК ленточного типа.

При конструировании ОК необходимо выбирать:

• тип оптического волокна (жгут, моноволокно);

• покрытие волокна (плотное, трубчатое, комбинированное);

• место расположения силовых элементов (в центре, по периферии);

• оболочку кабеля (пластмасса, металл);

• конструкцию сердечника кабеля.

При проектировании и конструировании волоконно - оптических кабелей (ВОК) важно учитывать:

• факторы, вызывающие дополнительные затухания и чрезмерные механические деформации при всех условиях использования;

• возможные изменения геометрических размеров конструкции ОК в связи с сезонными изменениями температуры;

• затухание в 0В, полосу пропускания, числовую апертуру, минимально допустимый радиус изгиба, число волокон в кабеле, предельно допустимые механические нагрузки. Необходимо также учитывать простоту работы с волокном и идентификацию 0В при сращивании ОК.

Указанные параметры определяются первичными характеристиками волокон: показатель преломления сердцевины и оболочки, диаметр сердцевины, толщина оболочки, коэффициент затухания в сердцевине и оболочке, а также неоднородностями на границе "сердцевина - оболочка", изгибами волокон.

При разработке конструкций ОК должны учитываться следующие условия:

• упрочнение оптического кабеля силовыми элементами с целью ограничения его вытягивания при одновременном обеспечении малых радиусов изгиба;

• сохранение постоянного расположения оптических волокон по всему сечению ОК при различных механических воздействиях;

• защита от механических и химических воздействий;

• предохранение, волокон в защитной оболочке, от изгибов, способных вызвать ухудшение оптических свойств;

• возможность достаточно простого соединения отдельных отрезков кабеля между собой и заделка их в оптические разъемы.

Поэтому, в оптические кабели, кроме волокон, закладываются:

• упрочняющие элементы, ограничивающие продольную нагрузку на разрыв в волокне;

• заполнители (например, в виде сплошных пластмассовых стержней);

• армирующие элементы для повышения стойкости кабеля против внешних механических нагрузок;

• наружные демпфирующие и защитные оболочки для предохранения от проникновения влаги, паров агрессивных веществ и внешних механических воздействий.

Из всего разнообразия конструкций кабелей, разрабатываемых и используемых в мире, можно выделить три группы:

1 группа - кабели концентрической повивной скрутки,

2 группа - кабели с фигурным сердечником,

3 группа - плоские кабели ленточного типа.

В кабелях первой группы каждый последующий повив, по сравнению с предыдущим, имеет на шесть волокон больше, например 7, 13, 19 волокон. В кабелях повивной скрутки волокна свободно располагаются внутри трубки из полиэтилена. В центре имеется армирующий элемент.

В кабелях с фигурным сердечником в центре располагается фигурный пластмассовый сердечник, в пазах которого укладываются оптические волокна. Такая структура кабеля позволяет размещать 4, 6, 8, 10 OB. BOK ленточного типа состоит из стопки плоских пластмассовых лент с вмонтированными в них оптическими волокнами. Чаще всего в ленте размещают 12 волокон, а число лент составляет 6, 8, 12.

 

1.3.1.2 Преимущества ВОЛС по отношению к медным КЛС

Различают два основных типа связи: линии в атмосфере (радиолинии) и направляющие линии передачи (линии связи, кабели). Линией связи называется совокупность устройств, служащих для передачи электрических сигналов от источника к потребителю.

Линейный тракт состоит из оконечной и промежуточной аппаратуры линейного тракта и оптического кабеля. Оконечная аппаратура линейного тракта (ОАЛТ) содержит: квантово-электронные модули передачи и приема (ПОМ и ПрОМ), предназначенные для преобразования электрических сигналов в оптические и обратно: преобразователи кода (ПК) для формирования помехоустойчивого линейного сигнала применительно к оптическому тракту; устройства питания, служебной связи (СС); телемеханики и телесигнализации (ТМ), (ТС) и другие вспомогательные узлы, необходимые для технической эксплуатации световодного линейного тракта.

Промежуточная аппаратура линейного тракта (ПАЛТ) содержит линейные регенераторы (ЛР), состоящие из ПрОМ, электронного регенератора (Р) и ПОМ, а также устройства питания, ТМ и ТС, СС и другие, обеспечивающие техническую эксплуатацию и контроль качественных показателей промежуточной аппаратуры.

К настоящему времени создано три типа световодов: со ступенчатым изменением профиля показателя преломления (ППП), имеющие полосу пропускания 50...60 МГц·км, с градиентным ППП, полоса пропускания которых 500...1000 МГц·км, и одномодовые с полосой пропускания несколько десятков Ггц·км. Для систем передачи общегосударственной сети наибольший интерес представляют последние два типа световодов, позволяющие использовать системы передачи большой емкости (третичную и более высокие ступени систем передач).

Важнейшим показателем, характеризующим технико-экономическую эффективность систем передачи, является длина участка регенерации. Таким образом, основными параметрами, определяющими длину участка регенерации, являются: энергетический потенциал Рппр, который зависит от степени совершенства элементов линейного тракта (излучателей и фотодетекторов), и затухание в кабеле к.

Мощность на выходе передатчика зависит от типа применяемого излучателя. В качестве излучателя используют полупроводниковые лазеры или светодиоды. Лазеры по сравнению со светодиодами имеют более узкие спектры излучения и диаграмму направленности и применяются, как правило, в линиях связи большой протяженности. Типичное значение мощности, вводимой в волокно лазеров составляет 1...5 мВт, а для светодиодов - около 0.1 мВт.

Минимальный уровень мощности на входе фотоприемника зависит от скорости передачи, типа применяемого фотодетектора и заданной помехоустойчивости (вероятность ошибки). В настоящее время в качестве фотодетекторов применяют p-i-n фотодиоды и лавинопролетные фотодиоды (ЛФД). В линиях связи большой протяженности используют ЛФД, чувствительность которых на 8...10 дБ выше за счет эффекта внутреннего умножения. Для вторичных (120 каналов) и третичных (480 каналов) систем передачи на рабочей длине волны 0.85 мкм при вероятности ошибки 10-9 допустимая минимальная мощность на входе фотоприемника составляет примерно (2...5)·10-9 Вт. Следовательно, энергетический потенциал для рассматриваемого случая составляет 50...55 дБ На длине волны 1.3 мкм чувствительность фотодетекторов ниже и энергетический потенциал равен 45...50 дБ.

Затухание кабеля зависит от длины волны и ряда факторов: поглощения в материале, рассеяния, изгибов и дефектов в световоде. Дисперсионные искажения в световодах с градиентным профилем показателя преломления практически не ограничивают длину участка регенерации систем передачи со скоростями до 140 Мбит/с. В диапазоне 1.3 мкм при использовании таких световодов могут быть реализованы системы со скоростью передачи до 34 Мбит/с и длиной участка регенерации до 30 км. При увеличении скорости передачи более 34 МБит/с из-за дисперсионных искажений необходимо либо уменьшить длину участка, либо использовать более широкополосные одномодовые светодиоды.

Линейный тракт, предназначенный для передачи цифрового сигнала, снабжается на входе преобразователем двоичного сигнала в цифровой линейный сигнал, а на выходе - преобразователем линейного сигнала в двоичный.

К линейным сигналам ВОСП предъявляются следующие требования:

спектр сигнала должен быть узким и иметь ограничение как сверху, так и снизу. Чем уже спектр сигнала, тем меньше требуется полоса пропускания фотоприемника, а соответственно уменьшаются мощность шума и его влияние. Ограничение спектра сверху снижает уровень межсимвольной помехи, а ограничение снизу - флуктуации уровня принимаемого сигнала в электрической части фотоприемника, имеющего цепи развязки по постоянному току. Минимальное содержание низкочастотных составляющих позволяет также обеспечить: устойчивую работу цепи стабилизации выходной мощности оптического передатчика;

код линейного сигнала должен обеспечивать возможность выделения колебания тактовой частоты, необходимой для нормальной работы тактовой синхронизации;

код линейного сигнала должен обладать максимальной помехоустойчивостью, которая позволяет получать при прочих равных условиях максимальную длину участка регенерации;

код линейного сигнала должен обладать избыточностью, которая позволяет по нарушениям правила образования кода судить о возникновении ошибок;

код линейного сигнала должен быть простым для практической реализации преобразования кода.

Для того чтобы передавать световые сигналы по волоконному световоду, для преобразования электрических сигналов в оптические и наоборот, в начале и конце световода требуется соответствующие передающие и принимающие элементы (рис. 1.1). [18] На стороне передатчика электрический сигнал осуществляет модуляцию интенсивности излучения источника света. Оптический сигнал вводится в волоконный световод и поступает на приемник. Здесь фотодетектор вновь преобразует его в электрический сигнал.

 

 

 

 


1 Модулятор 3 Приемник э - электрический

2 Передатчик 4 Демодулятор 0 – оптический

Рис. 1.1 Схема волоконно-оптической системы передачи

 

К активным элементам ВОЛС относятся источники излучения (ИИ) и фотоприемники (ФП). В качестве ИИ для ВОСП используются светоизлучающие диоды (СИД) и полупроводниковые лазеры (ПЛ). Фотоприемники предназначены для преобразования оптического сигнала в электрический, который затем усиливается и обрабатывается в электронных устройствах. Оптический передатчик (рис. 1.2) [4] предназначен для обеспечения постоянного уровня мощности (ЛД) с учетом всех дестабилизирующих факторов.


 

 

 


Uсо – напряжение сигнала ошибки

Uоп – напряжение опоры

Рис. 1.2 Функциональная схема оптического передатчика

 

Задачей оптического приемника (рис. 1.3) является обеспечение требуемого уровня электрического сигнала на входе схемы обработки СО. Излучение из волоконного световода (ВС) подается на ФП, который преобразует оптический сигнал в электрический в виде величины фототока. Далее сигнал поступает на основной усилитель ОУ, охваченный схемой АРУ для обеспечения постоянного уровня сигнала на выходе. Одним из параметров оптического приемника является отношение Рсигн/Ршума, которое выбирается исходя из обеспечения заданного уровня ошибок. При расчете коэффициента используют понятие вероятности ошибки. Для восстановления и регенерации оптического сигнала в линии используется оптический регенератор (рис. 1.4), который состоит из оптического приемника с малошумящим усилителем регенератора импульсного электрического сигнала, ИИ модулятором и схемой стабилизации. [4]

 

 

 

 


Рис. 1.3 Функциональная схема оптического приемника


Современные регенераторы строятся с использованием интегральных микросхем. Регенератор Р работает аналогично с Рсигн в симметричных СП с тем отличием, что требуется регенерировать не квазитроичный код, как в электрических, а двоичный.

 

 

Для формирования линейных сигналов ВОСП используются блочные коды вида nBmB, где n означает число кодируемых цифровых разрядов, B определяет двоичное основание системы счисления исходного кода, m - число передаваемых по ОВ двухуровневых сигналов, соответствующих n разрядам. Например, 1B2B обозначает, что один цифровой разряд передается двумя сигналами по ОВ и относительная скорость передачи в линейном тракте в 2 раза выше скорости входных символов. [26]

Наиболее простыми линейными кодами являются так называемые NRZ-коды (без возвращения к нулю) и RZ-коды (с возвращением к нулю). В NRZ-коде “1” передается импульсами, а “0” - паузой (рис.1.5а). В RZ-коде “1” передается последовательностью из импульса и паузы, причем имеет в 2 раза меньшую длительность, а “0”, как и раньше, передается паузой (рис.1.5б). Недостатком кода RZ по сравнению с NRZ является необходимость использования более широкой полосы передачи из-за применения импульсов меньшей длительности, а преимуществом его является то, что источник оптического излучения в этом случае работает в течении меньшего времени и соответственно степень деградации его параметров снижается. Согласно принятому определению RZ-код является примером 1B2B-сигнала.

Недостаток рассмотренных кодов заключается в том, что они не удовлетворяют перечисленным требованиям (за исключением последнего пункта), поэтому такие коды могут быть рекомендованы лишь на линиях небольшой протяженности при отсутствии регенерационных участков.

 

1

0

0

1

1

0

0

0

1

1

1

0

   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  NRZ
  а)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   RZ
  б)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   BIF
  в)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  2B3B
  г)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  CMI
  д)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  M
  е)

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                     

Рис.1.5 Линейные коды ВОСП

 

Для снижения содержания в спектре сигналов низкочастотных компонент применяют манчестерский, или бифазный, код BIF, в котором “0” передается последовательностью из паузы и импульса, а “1” - последовательностью из импульса и паузы, причем длительность импульса в 2 раза меньше длительности “1” (рис.1.5в). В данном коде отсутствует подряд более чем два идентичных символа, что определяет снижение в спектре низкочастотных компонент. Такой код также целесообразен при передачи в линиях малой протяженности без регенераторов и является примером 1B2B-сигнала.

 Алгоритм образования кода 2B3B следующий: разряды 00 заменяются на 001; 01 на 010; 10 на 100 и 11 на 011. Такой код обеспечивает возможность снижения скорости передачи в линии по сравнению с 1B2B-сигналами.

К общим недостаткам рассмотренных кодов относятся следующие: невысокая помехозащищенность, сложности с выделением тактовой частоты, а также с обнаружением ошибки. По этой причине коды не могут быть рекомендованы для организации линейного тракта ВОСП большой протяженности. Введение корреляционных связей между амплитудами передаваемых двух уровневых сигналов позволяет устранять отмеченные недостатки.

В цифровых ВОСП для первичной ступени ИКМ иерархии целесообразно использовать код CMI; для вторичной - CMI и BIF; для третично - BIF и код Миллера; для более высоких ступеней - код Миллера и скремблированный бинарный сигнал в формате NRZ.

Использование многоуровневых кодов по сравнению с двух-уровневыми на городских, зоновых и магистральных сетях связи приводит к снижению энергетического потенциала системы на 15... 20 дБ. Поэтому многоуровневые коды рекомендуется использовать во внутриобъектовых линиях связи специального назначения.

 

1.4 Синхронная цифровая иерархия

 

1.4.1 Принципы временного уплотнения

Существует два основных способа временного уплотнения или мультиплексирования:

1. Плезиохронное уплотнение: Данный способ допускает некоторую гибкость в синхронизации. Синхронизация источников и мультиплексоров может выполняться локально. Проблемы связанные с рассинхронизированностью решаются методом согласования скорости передачи.

2. Синхронное уплотнение: Это иной способ. Синхронизация источников сигналов и мультиплексоров, в принципе осуществляется от центрального источника синхронизации. Преимущество такого метода заключается в том. что информация любого канала может быть немедленно помещена внутрь временного кадра (слота) в любом месте сети. Это позволяет быстро и гибко маршрутизировать и объединять в пакеты каналы.

 

1.4.2 Общие понятия об SDH

SDH – это аббревиатура от английского «Synchronous Digital Hierarcchy» – Синхронная цифровая иерархия.SDH – это способ временного уплотнения сигналов, согласно которому цифровые потоки более низкой скорости:

 

1544 Кбит/с

2048 Кбит/с

6312 Кбит/с

34368 Кбит/с

139264 Кбит/с

 

объединяются, уплотняются во времени и определенным способом размещаются внутри одного высокоскоростного цифрового потока

 

155,52 Мбит/с для STM1

622,088 Мбит/с для STM4

2488,320 Mбит/с для STM16

Поток STM1 объединяет 63 2 Мбит/с потоков. Поток STM4 объединяет 256 2 Мбит/с потоков или четыре плезиохронных потока 39264 Кбит/с. Поток STM16 объединяет 4 потока STM4.

 

1.4.3 Структура кадра SDH

SDH структура квантована по времени на единицы (кадры) длительностью 1/8000 секунды, т.е. 125 мксек. Каждый кадр SDH представляет из себя «контейнер» куда может «складываться информация от более низкоскоростных цифровых потоков».

Структура кадра STM-1 приведена на рисунке 1.7

1. Pay load – область, где размещается информация, поступающая во входных потоках низшего уровня. Т.е. полезная нагрузка.

2. RSOH – служебная информация, формируемая внутри самой системы передачи и предназначенная для мультиплексоров, работающих в режиме регенератора.

3. MSOH – служебная информация, формируемая внутри самой системы передачи и предназначенная для мультиплексоров, работающих в режиме ввода/вывода.

4. Pointer- указатель – информация по которой система определяет место (адрес) начала так называемого «Виртуального контейнера VC4» внутри области Pay load.

Области RSOH и MSOH называются «Заголовком секции».

 

RSOH  
Сукция регенератора Область размещения полезной нагрузки.
(3х9=27 байт) Pay load.
Pointer Указатель 9 байт  
  9- Рядов. 261 – Колонка.
MSOH  
Секция мультиплексора (9х261=2349 байт)
(5х9=45 байт)  

Рис. 1.7 Структура кадра STM-1

На рис. 1.8 представлен отдельно «Заголовок секции».

 

                                          RSOH

A1 A1 A1 A2 A2 A2 C1 NU NU
B1     E1     F1    
D1     D2     D3    

 

                                     MSOH

B2 B2 B2 K1     R2    
D4     D5     D6    
D7     D8     D9    
D10     D11     D12    
Z1 Z1 Z1 Z2 Z2 Z2 E2 NU NU

Рис. 1.9 Заголовок секции

 

Назначение байтов «Заголовка секции».

A1, A2 – байты кадровой синхронизации (фрейм)

B1 – байт паритета (четности)

B2 – байты паритета (исключая секцию RSOH)

D1 D3 - байты канала управления и сигнализации («ЕМС», или иначе «DСС»)

D4 D12 - байты канала управления и сигнализации («ЕМС», или иначе «DСС»)

E1, E2 – служебный канал. При включении спец. телефонов позволяет вести разговор операторов.

K1, K2 – при конфигурации двух элементов в плоское кольцо обеспечивают автоматическое переключение каналов.

F1 – канал пользователя.

Z1, Z2 – пока в стандарте не определены, но будут использованы для оценки качества тактовой частоты для синхронизации узла.

NU – байты национального использования.

Байты в непомеченных ячейках пока не стандартизованы.

В области Pay load (информационной части кадра) полезная информация размещается в так называемых «виртуальных контейнерах». В информационной части может размещаться один «виртуальный контейнер» VC-4 или три «виртуальных контейнерах» VC-3 (см. рис. 1.10 и 1.14).

 

                                           261 байт


J1 VC-4
B3  
C2 Полезная
G1  
F2  
H4 информация
F3  
K3  
N1  

Рис. 1.10 Один «виртуальный контейнер» VC-4

 

Назначение байтов Path Overhead – заголовков «виртуальных контейнеров»:

J1 – путь сигнала

B3 - контроль четности (коэффициент ошибок

C2 – маркер сигнала

G1 – статус пути

F2 – пользовательский канал

H4 – индикатор нескольких кадров

F3 – пользовательский канал

K3 – защита пути (верхний уровень)

N1 – мониторинг последовательно соединенных участков

 


              87 байт                    87 байт                    87 байт

J1   J1   J1  
B3   B3   B3  
C2   C2   C2  
G1   G1   G1  
F2   F2   F2  
H4   H4   H4  
F3   F3   F3  
K3   K3   K3  
N1   N1   N1  

                                                   261 байт

Рис. 1.11 Три «виртуальных контейнера» VC –3

 

1.4.4 Построение «кольцевой» структуры SDH

Общий вид кольцевой синхронной структуры приведен на рис. 1.12

 

Рис. 1.12 Общий вид кольцевой синхронной структуры

 

В условиях города это самое рациональное решение. Во-первых, завязав все АТС в «кольцо» мы практически получаем соединение всех АТС по принципу «каждая с каждой», при этом протяженность межстанционных линий резко сокращается. Во-вторых, при использовании аппаратуры SDH уровня STM4 можно организовать самозаживляющиеся кольца, что ведет к повышению надежности связи. Так, даже при разрыве кольца в одном месте, связь не будет потеряна. При организации кольцевой схемы повышение надежности достигается также использованием двух путей передачи «Path Protection» (см. рис. 1.13)

 

 

 


Резервный канал
                  

 

     
 
   2 Мбит/с сигнал

 

 


Рис. 1.13 Организация кольцевой схемы с использованием двух путей передачи.

 

Повышение надежности можно добиться также резервированием передающей аппаратуры SDH, в частности резервированием 1+1 линейных трактов и резервированием 1:n трибутарных модулей 2 Мбит/с, резервированием коммутационного поля синхронного мультиплексора.

При расширении сети или при необходимости можно организовать соприкасающиеся кольца или кольца с поперечными сечениями.

 


Глава 2 Основные расчеты и параметры оптического волокна

 

2.1 Расчет числа каналов связи

 

Число каналов для участка Семипалатинск - Алматы рассчитывается, исходя из численности населения, проживающего в этих пунктах. Численность может быть определена на основании статистических данных последней переписи населения. Обычно перепись населения производится один раз в пять лет, поэтому важно учитывать прирост населения. Воспользуемся данными переписи 1997 г: в г. Усть-Каменогорске – 460 тыс.чел., в г.Семипалатинске около 500 тыс.чел., в г. Алматы-1,6 млн.чел.

Таким образом, количество населения в этих пунктах, а также окрестностях с учетом среднего прироста определяется:

 

                                                      (2.1)

 

где Н0 – число жителей на время проведения переписи населения, чел.;

DН – средний годовой прирост населения в данной местности, %, (принимается (2-3)%);

t – период, определяемый как разность между назначенным годом перспективного проектирования и годом проведения переписи населения, год.

Год перспективного проектирования принимается на 5¸10 лет вперед по сравнению с текущим годом. Если в проекте принять 5 лет вперед то:

 

t=5+(tn-to)                                                                                  (2.2)

 

где tn –год составления проекта; tn = 2002 год

to – год, к которому относятся данные Но; to = 1997 год

t=5+(2002-1997)=5+5=10 лет

 

По формуле (2.1) рассчитаем численность населения в городе Семипалатинске и в городе Алматы :

 

= 500000 х (1+2/100)10 = 609497

= 1600000 х (1+2/100)10 =1950391

 

Учитывая то обстоятельство, что телефонные каналы в междугородной связи имеют превалирующее значение, предварительно необходимо определить количество телефонных каналов между заданными пунктами. Для расчета количества телефонных каналов можно воспользоваться приближенной формулой:

 

                                                  (2.3)

 

где a и b - постоянные коэффициенты, соответствующие фиксированной доступности и заданным потерям; обычно потери задаются равными 5%, тогда a=1,3; b=5,6;

у- удельная нагрузка, то есть средняя нагрузка, создаваемая одним абонентом, у=0,15 Эрл.;

КТ – коэффициент тяготения, колеблется в широких пределах от (0,1 до 12)%. В проекте принимаем КТ=12%, т.е. КТ=0,12;

ma и mб – количество абонентов, обслуживаемых тем или иным оконечным пунктом, определяется в зависимости от численности населения, проживающего в зоне обслуживания. Принимая средний коэффициент оснащенности населения телефонными аппаратами равные 0,3, количество абонентов будет определяться как:

m =0.3×Ht                                                                           (2.4)

ma=0.3× = 0,3×609497 = 182849 чел.

mб=0.3× = 0,3×1950391 = 585117 чел.

 

Теперь по формуле (2.3) находим nmлф:

 

nmлф =1,3 х 0,12х 0,15 х (182849 х585117)/(182849 +585117) +5,6 = 3266

 

Учитывая, что первичный цифровой канал 2Мб/с состоит из 30 стандартных каналов, получим:

 

3266 / 30 = 109 х 2Мб/с потоков или 3270 каналов.

 

По кабельной линии передачи организуются каналы других видов связи, а также учитываются транзитные каналы.

Общее число каналов по данной системе требуется:

 

N=Nтлф + Nв + Nтр                                                                 (2.5)

 

где Nв – число каналов ТЧ для передачи сигналов вещания, под вещание отводится 1 х 2Мб/с поток;

Nтр – число транзитных каналов. В число транзитных каналов входят каналы связи областных центров с районными центрами, а также каналы для связи Казахстана с ближним и дальним зарубежьем. Для связи областных центров с районными предусматривается 15 х 2Мб/с потоков. Для связи областных центров с МЦК-2 в Астане: Семипалатинск -10 х 2Мб/с потоков;

Усть-Каменогорск -10 х 2Мб/с потока; Аягуз - 2 х 2Мб/с потока; Талды Корган - 5 х 2Мб/с потока; Алматы –40 х 2Мб/с потока.

Для связи областных центров с МЦК-1 в Алматы: Семипалатинск -10 х 2Мб/с потоков; Усть-Каменогорск -10 х 2Мб/с потока; Аягуз - 3 х 2Мб/с потока; Талды – Корган - 15 х 2Мб/с потока.

Итого для связи Казахстан – Казахстан необходимо 115х2Мб/с потоков. Кроме этого учитывая, что магистраль будет обеспечивать выход стран средней Азии на Россию, необходимо дополнительно:

 

Узбекистан- РФ 5 х 2Мб/с потока;

Узбекистан- Украина- 3 х 2Мб/с потока;

Киргизия- РФ- 2 х 2Мб/с потока;

Туркмения-РФ -3 х 2Мб/с потока;

Казахстан – РФ -37 х 2Мб/с потока

Итого транзит на РФ -50 х 2Мб/с потока

Всего транзитных потоков 165 х 2Мб/с потока

 

N = 109 + 1+165= 275 х 2Мб/с потоков или 8250 каналов.

 

Учитывая, что будет организована кольцевая схема организации связи необходим 100% резерв потоков, тогда

 

Nобщ = 275 х 2 = 550 х 2Мб/с потоков, 16500 каналов.

 

Проведем еще один анализ:

STM-1 имеет 63 х 2-х мегабитных потоков или1890 каналов.

STM-4 вмещает 63 х 4= 252 х 2Мб/с потока, 7560 каналов. Это не удовлетворяет нашим потребностям, следующая в иерархии система передачи STM-16 которая вмещает 63 х 16 = 1008 х 2Мб/с потока или 30240 каналов. Что соответствует проектной емкости.

 


2.2 Выбор волоконно-оптического кабеля

 

Для обеспечения работы STM-16 по схеме 1+1 (резерв) необходимо 4 волокна. Точно также 2 основных и 2 резервных для организации зоновой связи. С учетом перспективы развития и выходом на север подходит

12-волоконный кабель фирмы SIECOR с одномодовыми волокнами и ступенчатой дисперсией A-DF(ZN)2Y3X4E9/125 0.38F3.5+0.22H18 со скоростью передачи информации 622,080 Мбит/с, работающий на длине волны =1550 нм. Кабель 12-волоконный, т.е. 6 волокон в одном направлении (7560х6=45360 каналов) и 6 в обратном (45360 каналов). Таким образом, 45360-16500 = 28860 каналов будут резервными. Приведем характеристики выбранного кабеля:

 

- 1-12 одномодовые волокна;

- рабочая длина волны 1550 нм;

- неметаллический центральный элемент;

- оптические модули со скруткой типа SZ;

- пустоты и оптические модули заполнены гидрофобным материалом;

- внешняя оболочка из полиэтилена;

- кабель полностью диэлектрический;

- пригоден для прокладки в кабельной канализации.

Оптические характеристики кабеля приведены в таблице 2.1.

 

Таблица 2.1- оптические характеристики кабеля типа A-DF(ZN) 2Y 3x4 E9/125 0.38F3.5+0.22H.18

Диаметр пятна модового поля (1550нм) 10,5мкм+/-1,5мкм
Диаметр волокна с покрытием 125мкм+/-2мкм
Погрешность концентричности пятна модового поля £ 1мкм
Некруглость покрытия £ 2%
Профиль коэффициента преломления N1 шаговой
Тип N2 согласующее покрытие
Показатель преломления сердцевины для 1550нм 1,4681
Числовая апертура 0,13
Критическая длина волны волоконного кабеля £ 1250нм
Затухание при 1550нм £ 0,22 дБ/км
Дисперсия при 1550нм £ 18пс/(нм × км)

 

Сердечник волоконно-оптического кабеля (ВОК) с более высоким коэффициентом преломления по сравнению с оболочкой, состоит из SiO2 (двуокись кремния) с добавкой GeO2 (двуокись германия).

Материал для покрытия волокна SiO2 (двуокиси кремния). Основное покрытие – апоксиакрелат. Он применяется в двух слоях, различных модулей. Внутренний слой немного мягче, чем наружный. Это защищает стекловолокно от потерь при микроизгибах и от образивных износов. Размеры основного покрытия составляет 250мкм ± 15мкм. Основное покрытие легко удаляется с помощью механических инструментов, для снятия покрытия. Не требуется никаких химических составов для удаления покрытия.

Контрольное испытание нагрузки: 8N в 1 секунду; напряжения: 1% сопротивление разрыву волокна по крайней мере: 150N/mm2. Волокно размещается в оптическом модуле, называемом буферной трубой. В буфере можно разместить одно или более волокон; волокна свободно лежат в трубе, статистически в центре трубы. Благодаря скрутке буфера сверхпротяженность составляет около 0,3-0,5%. Это означает, что если к кабелю применяется растягивающее усилие, а отсюда и к сердечнику, относительное удлинение в широком диапазоне не повлияет на нагрузку волокна, и не будет наблюдаться увеличение затухания.

Метод буферной трубы также применяется в случае сжатия или расширения кабеля из-за перепадов температур. Структура также хороша как защита против поперечного сжатия. Используется SZ – скрутка с чередованием направления повива. При SZ скрутке направление ее меняется через определенное число витков, поэтому скручиваемые элементы описывают вдоль оси кабеля сначала форму S, а затем после смены направления форму Z. В точке смены направления они лежат параллельно оси кабеля. При SZ скрутке вследствие упругости скручиваемых элементов необходимо положить вокруг них по спирали фиксирующую липкую ленту для того, чтобы удерживать их в правильном скрученном состоянии. Технические характеристики кабеля приведены в таблице 2.2.

 

2.3 Расчет длины участка регенерации ВОСП

 

Необходимо рассчитывать две величины длины участка регенерации по затуханию:

La max – максимальная проектная длина участка регенерации;

La min – минимальная проектная длина участка регенерации.

Для оценки величины длин участка регенерации могут быть использованы следующие выражения:

 

                                                      (2.6)

                                                           (2.7)

 

где Amax, Amin (дБ) – максимальное и минимальное значения перекрываемого затухания аппаратуры ВОСП.

Aok(дБ/км) – километрическое затухание в оптических волокнах кабеля;

Aнс(дБ) – среднее значение затухания мощности оптического излучения неразъемного оптического соединителя на стыке между строительными длинами кабеля на участке регенерации;

Lстр (км) – среднее значение строительной длины кабеля на участке регенерации;

Аpc (дБ) – затухание мощности оптического излучения разъемного оптического соединителя;

n – число разъемных оптических соединителей на участке регенерации;

M (дБ) – системный запас ВОСП по кабелю на участке регенерации;

 

 

2.3.1 Программа для расчета длины регенерационного участка

10 CLS

20 l = 5E-10

30 M =.3098

40 PRINT "Допустим, L="; l; " и M="; M

50 t = l * M

60 PRINT "Тогда по формуле t = L * M, t="; t

70 l2 = 1.55E-06

80 l1 = l

90 n1 = 1.46775

100 D =.003

110 c = 300000

120 t3 = t

130 PRINT "Данные для волноводной и суммарной дисперсии:"

140 PRINT "l1="; l1; "l2="; l2; "n1="; n1; "d="; D; "c="; c; "t3="; t3

150 t1 = (l1 / l2) * ((2 * n1 ^ 2 * D) / c)

160 PRINT "Посчитаем волноводную дисперсию"

170 PRINT "t1 = (l1 / l2) * ((2 * n1 ^ 2 * d) / c), отсюда t1="; t1

180 t2 = t3 + t1

190 PRINT "t2="; t2

200 F = 1 / t2

210 PRINT "Следовательно, ширина пропускания световода:"

220 PRINT "F="; F

230 l3 = 6

240 F1 = 2.5E+09

250 PRINT "Значит, если F1="; F1; "ГГц"

260 PRINT "и строительная длина кабеля l3="; l3; "км"

270 l4 = (F ^ 2 / F1 ^ 2) * l3

280 PRINT "Тогда по формуле для вычисления длины регенерационного участка:"

290 PRINT "l4 = (F ^ 2 / F1 ^ 2) * l3"

300 PRINT "l4="; l4

310 PRINT ""

320 PRINT "длина PУ с учетом затухания"

330 PRINT "Исходные данные:"

340 M = 11

350 P1 = 45

360 P2 = 15

370 B =.05

380 c = 6

390 h =.22

400 PRINT "M="; M; "h="; h; "B="; B; "c="; c; "P1="; P1; "P2="; P2

410 A = P1 + P2

420 G = (A - M) / (h + B / c)

430 D = -27.5

440 PRINT "И, если D="; D

450 G1 = (ABS(D) - M) / (h + B / c)

460 PRINT "и длина РУ без усилителей и предусилителей"; G1

470 PRINT "Длина РУ без бустеров"

480 P3 = 6

490 PRINT "Если уровень вых. сигнала ОПУ ="; P3

500 A1 = A - P3

510 G2 = (A1 - M) / (h + B / c)

520 PRINT "Тогда G="; G, "G1="; G1, "G2="; G2

530 END

 

2.4 Расчет участка регенерации

 

ВОКМ состоит из проложенных и срощенных строительных длин кабеля и проходит до первых разъемных соединений на своих концах. Наиболее важными передаточными параметрами, которые должны быть учтены при проектировании волоконно-оптических кабельных магистралей являются затухание и ширина полосы пропускания применяемых волоконных световодов, потери в разъемных соединителях, ответвителях, устройствах ввода-вывода и т.д., а также запас который необходимо закладывать в проект на аппаратуру, запас для компенсации потерь при ремонте неразъемных соединений, поскольку кабельные магистрали проектируются на длительный период эксплуатации. Характеристики ВОК должны обеспечить максимальную длину участка регенерации Lр. Регенераторы практически полностью восстанавливают первоначальную форму сигнала и его положение во времени, поэтому Lр является одним из основных параметров ВОЛС. Для кабеля с применением волокна фирмы Siecor A-DF(ZN)2Y 3х4 E9/125 0.38 F3.5+0.22H18 строительная длина 6000 м., поток STM-16 со скоростью передачи 2,5 Гбит/с. В приложении 5 приведена блок-схема организации связи с использованием синхронных мультиплексоров SMA-16 линейных модулей SLD-16 фирмы Siemens, состоящих на передаче из мультиплексоров, передатчиков и усилителей; на приеме: усилителей, приемников и демультиплексоров.

Таблица 2.2 - технические характеристики кабеля тип A-DF(ZN) 2Y 3x4 E9/125 0.38F3.5+0.22H.18

Число волокон 2 – 30 32 – 48 50 – 96
Диаметр приблизительно (мм) 10,3 12,3 13,8
Вес, приблизительно (кг/км) 85 125 141
Минимальный радиус изгиба, мм Во время монтажа В установленном виде   300 200   350 250   400 300
Прочность на растяжение, Н Короткий срок (во время монтажа) Длительный срок (смонтированный)   2700 1300   2700 1300   2700 1300
Напряжение при сжатии/при раздавливающем напряжении (полностью реверсивное увеличение затухания) (Н/10см) 2000 2000 2000
Сопротивление удару (Е=3Nm, r=300mm) (полностью реверсивное увеличение затухания) (импульсы) 30 30 30
Диапазон температуры при транспортировки и хранении (0С) -30...70 -30...70 -30...70
Диапазон температуры при монтаже (0С) -5...50 -5...50 -5...50

 

Технические характеристики оборудования линейного тракта SMA-16 соответствуют нормам МСЭ и имеют следующие параметры на длине волны равной 1550 нм:

Уровень оптической мощности на выходе передатчика: Рвых пер= -3…2 дБ;

Уровень оптической мощности на выходе усилителя: Pвых ус=13…16 дБ;

Уровень оптической мощности на входе предусилителя: Рвх предус= -45…-15 дБ;

Уровень оптической мощности на входе приемника: Рвх пр = -36…-8;

Функциональные схемы оконечного оборудования приведены в приложениях.

Учитывая, что самый протяженный участок магистрали Семипалатинск Шемонаиха - 171 км, сделаем расчет для этого участка.

Найдем число муфт на данном участке:

L=171 км; Строительная длина кабеля Lстр=6 км.:

 

Nмуфт =L/Lстр-1=171/6+1=30 муфт                                       (2.8)

 

Определим затухание кабеля:

 

Sк=0,22×171=37,62 дБ

 

Sк-затухание кабеля, 37,62 дБ

Аэзап – эксплуатационный запас аппаратуры, 3 дБ;

 Арс – потери в разъемных соединителях, 0,15 дБ;

Аэзк – эксплуатационный запас кабеля, 3 дБ;

a - погрешность D измерения затухани

 

Da = Nмуфты× Анс                                                                   (2.9)

 

где Анс – среднее значение неразъемного соединения, 0,05 дБ.

 

Da = 30×0,05 = 1,5 дБ.

 

Тогда общее затухание составит:

 

Sобщ=Sк+ Аэзап+4Арс+Аэзк+ Da = 37,62+3+0,6+3+1,5 = 45,72 дБ(2.10)

 

Уровень на входе приемника будет:

 

Рвх = 2 дБ – 45,72дБ= - 43,72 дБ

 

Уровень сигнала на входе приемника будет ниже нормы, а следовательно необходим бустер на передаче, который усиливает уровень сигнала на 13дБ.

Тогда уровень на приеме будет:

 

Рвх = 2дБ+13дб-43,72дБ= -28,72 дБ

 

Это соответствует норме.

Определим длину регенерационного участка не требующего дополнительного предусилителя.

Учитывая то, что уровень сигнала Рвх не должен быть меньше –36дБ, а на длине участка 171 км мы получили затухание 45,72 дБ, то превышение затухания составит:

 

а=45,72дБ-36дБ=9,72 дБ

 

Тогда длина регенерационного участка без предусилителя равна:

 

Lрег= 171- 9,72/0,22= 126,8 км

 

Учитывая данные расчетов на шести участках необходимо использовать предусилители. Это участки:

 

- Семипалатинск – Шемонаиха (L=171 км.)

- Усть-Каменогорск – Георгиевка (L=155,2 км.)

- Жангизтобе – Аягуз (L=169 км.)

- Таскескен – Учарал (L=142,9 км.)

- Учарал – Сарканд (L=151 км.)

- Сарканд – Талдыкоран (L=162,7 км.)

 














Расчет основных характеристик оптического волокна

Качество ОК проверяется с использованием общепринятых методов измерений. Требуется установить стандарты на параметры ОВ и соответствующие методы измерения. На европейском уровне за разработку таких стандартов отвечает Рабочая группа 28 Комитета по электронным компонентам CENELEC, на всемирном уровне - Технический комитет 86 Международной электротехнической комиссии.

Важнейшим обобщённым параметром волоконного световода, используемым для оценки его свойств, является нормированная частота V Она получается суммированием аргументов цилиндрических функций для сердцевины (g1 a) и оболочки (g2 a):

 

V=((g1 a)2 - (g2 a)2)1/2=((k12 - b2)+(b2 - k22))2=(k12- k22)1/2=2· π· a(n12 - n22)1/2/ =2 × 3.14 × 4,5 ×10-6 × 0.13 / (1.55×10-6) = 2,3702               (2.11)

 

где -a радиус сердцевины оболочки, а = 4,5 мкм;

n1 - показатель преломления сердцевины, n1=1,4681;

n2 - показатель преломления оболочки, n2=1,4623.

Произведем расчет параметров кабеля, исходя из того, что мы имеем одномодовые волокна со ступенчатым профилем показателя преломления с диаметром сердцевины 2а=9мкм и критической длиной волны l=1250нм, диаметр поля моды 2w0 при длине волны 1550нм.

 

2w0» (2,6×l / Vc ×lc)×2a                                                             (2.12)

 

где l - рабочая длина волны, нм;

lс – критическая длина волны, выше которой в световоде направляется только основная мода;

Vc – критическая нормированная частота, для одномодового режима Vc=2,405.

 

l=1550нм: 2w0»(2,6×1550/2,405×1250)×9=12мкм

 

Если одномодовые ВС имеют изгибы или соединения, то размер диаметра поля моды является важным фактором влияющим на характеристики затухания. Так, увеличение диаметра поля моды приводит к ухудшению пропускания света в изгибах, но уменьшает потери в разъемных и неразъемных соединениях.

Апертура – это угол между оптической осью и одной из образующих светового конуса, попадающего в торец волоконного световода, при котором выполняется условие полного внутреннего отражения.

Рассчитаем показатель преломления оболочки n2, исходя из оптических характеристик кабеля числовая апертура NA=0,13

Известно что:

 

                                                                              (2.13)

 

n1 – показатель преломления сердцевины, 1,4681.

Тогда:

 

n2=

n2=

 

Учитывая, что в световоде границей раздела сред сердцевина – оболочка являются прозрачные стёкла, возможно, не только отражение оптического луча, но и проникновение его в оболочку. Для предотвращения перехода энергии в оболочку и излучения в окружающее пространство необходимо соблюдать условие полного внутреннего отражения и апертуру.

Известно, что при переходе из среды с большей плотностью в среду с меньшей плотностью, то есть при n1>n2, волна при определённом угле падения полностью отражается и не переходит в другую среду. Угол падения, начиная с которого вся энергия отражается от границы раздела сред, при wp= в, называется углом полного внутреннего отражения:

 

          


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: