На проектируемом участке преобладают глинистые и суглинистые грунты. На трассе превалирует III категория грунта

Способы прокладки кабеля в грунте должны чередоваться на трассе в зависимости от условий прокладки. Кабель может прокладываться как вручную, так и с помощью механизированных установок на соответствующих глубинах:

- 0,6 м на участках со скальными грунтами;

- 1,2 м в насыпных, песчаных и гравийных (предгорье) грунтах;

- 1,25м в супесчаных и суглинистых грунтах;

- 1,2 м в глинистых грунтах;

- до 1,5 на пахотных и поливных землях;

- 1,2 м в особо плотных грунтах, а также на пересечениях сухих русел рек и размываемых оврагов.[21]

Разработка траншей и котлованов с откосами без креплений в нескольких грунтах выше уровня грунтовых вод, с учетом поднятия, или грунтах, осушенных, допускается при глубине и крутизне откосов согласно таблице 2.3.

 

Таблица 2.3 - наибольшая допустимая крутизна откосов траншей и котлованов в грунтах естественной влажности при рытье без креплений

Грунт

Угол, град и крутизна откоса при глубине раскопки

 

1,5-3,0 м.

более 3,0 м.

Насыпной 45 1:1,00 45 1:1,25
Песчаный и гравийный 45 1:1,00 45 1:1,00
Супесок 56 1:0,67 50 1:0,85
Суглинок 63 1:0,5 53 1:0,75
Глина 76 1:0,25 53 1:0,5
Лес с сухой почвой 63 1:0,5 53 1:0,5

 

Прокладку кабеля рекомендуется выполнять под постоянным оптическим контролем, который осуществляется по результатам измерения затухания ОВ кабеля с помощью оптического тестера или рефлектометра. Для обеспечения постоянного оптического контроля строительной длины ОК, освобождают закрепленный на щеке барабана верхний (А) и нижний (Б) концы кабеля, разделывают их и подготавливают к сварке шлейфа на оптических волокнах.

Способ прокладки ОК с использованием защитного полиэтиленового трубопровода применен в данном дипломном проекте, т.к. на трассе имеются многочисленные преграды, расположенные близко друг от друга, затруднен доступ, а также имеются грунты с твердыми включениями и районами с повышенным влиянием внешних электромагнитных полей (районы повышенной грозодеятельности, сближения с ЛЭП, железными дорогами.

Прокладка ОК осуществляется комплексными механизированными специальными машинами и механизмами общестроительного назначения (тракторы, бульдозеры, экскаваторы и др.), а также для прокладки кабеля (кабелеукладчики, тяговые лебедки, пропорщики грунта и др.). В случае, если условия местности не позволяют использовать технику, прокладка производится с выноской вручную всей строительной длины кабеля, который укладывается вдоль траншеи, а затем опускается в нее.

Строительная длина используемого нами кабеля равна 6 км, это означает, что через 6000 м мы производим монтаж оптического кабеля в местах соединения, ответвления или распределения с использованием для защиты муфт. Применяем пластмассовые муфты типа UCАО-4-9. Основными частями данной универсальной муфты являются: корпус - изготовленный из полипропиленового сополимера, обладающего долговременной стабильностью, система уплотнения - содержащая коррозионно-устойчивый герметизирующий элемент на основе селикора, обладающий долговременной пластичностью, и расположенная внутри металлическая рамка для механического соединения оболочек кабеля и пластмассовые рамки для установки кассет с гребенками соединения длин кабеля. Для определения (отыскания) трассы кабеля в процессе эксплуатации, во время строительства укладывается сигнальная лента на глубину половины залегания кабеля. Сигнальная лента состоит из 3-х медных проводников, опресованных в полиэтиленовую ленту, поставляется рулонами длиной 250 м.

Строительные работы в зоне существующих инженерных коммуникаций должны выполняться с соблюдением требований эксплуатирующих организаций, при этом предварительное шурфование является обязательным. Особенно следует обратить внимание на пересечения газопроводов – работы производить только по окончательной привязки коммуникаций и наличия профилей переходов.

Переходы через асфальтированные шоссейные дороги выполняются методом прокола в соответствии с согласованиями эксплуатирующих организаций.

Также на пересечениях с железными и шоссейными дорогами, продуктопроводами и другими коммуникациями ОК затянут в полиэтиленовые или пластмассовые трубы, которые прокладываются закрытым (горизонтальным проколом (продавливанием), бурением) или открытым способом.

На застроенных участках (городские условия) необходимо предусмотреть прокладку в телефонной канализации из асбестоцементных труб.

Пересечения мелководных, спокойных или сухих русел рек выполнять одним створом в металлической трубе.

 


Глава 3 Описание примененных мультиплексоров

 

3.1 Синхронный линейный мультиплексор с функцией ввода – вывода SLD16

 

Линейный мультиплексор с функцией ввода вывода SLD16 имеет два линейных интерфейса для оптических сигналов 2,5 Гбит/с (STM – 16) для которых также возможно применение механизма переключения на резерв. Он также может содержать трибутарные интерфейсы для передачи до 32 потоков 140 Мбит с. SLD16 может использоваться на кольцевых и цепочечных сетях.

Линейный терминал SLT16 – это вариант оборудования только с одним линейным интерфейсом или, при реализации переключения линии на резерв, с двумя линейными интерфейсами. В принципе, SLT16 использует такой же подстатив и модули, как и синхронный линейный мультиплексор с функцией ввода – вывода SLD16, поэтому SLD16 можно получить (путем дооснастки) в любое время.

На рисунке 3.1 показана базовая функциональная структура типов конфигурации SLD16 и SLT16 с матрицей кросс соединений для соединений VC-4 внутри SLD16 и SLT16 в типичном оборудовании.

Кроме модулей для передачи полезной нагрузки (линейные и трибутарные модули, модуль коммутационного поля SNL), также показаны модуль линий блока тактового генератора (CLL), в котором находится модуль генерации тактовых импульсов, центральный модуль управления и текущего контроля (SCU) и модуль доступа к заголовку (ОНА). Интерфейс передачи телеметрической информации (TIF) представляет собой интерфейс для внешней сигнализации.

Преобразование в оптические/электрические сигналы (и наоборот) выполняет модуль оптического интерфейса (OIS16) на маршруте передачи STM-16.

Оптический приемник модуля двунаправленных оптических интерфейсов OIS16 преобразует входящий поток STM-16 в электрический сигнал, используя лавинный фотодиод (APD). В диапазоне длин волн 1300 нм для этого используются четверичные фотодиоды. Приемники «выделяются» из-за их очень высокого динамического диапазона, поэтому планирование и хранение запасных частей в значительной степени упрощено.

При необходимости, могут использоваться оптические предусилители ОР и оптические бустеры ОВ; также возможно каскадирование.

На плоскости VC-4 (16 х STM-1) электрический поток STM-16 преобразуется во внутренний поток ISDH/ потоки VC-4 посылаются в модуль SNL систем, который образует центральный элемент с неблокирующим межсоединением линейных и трибутарных сигналов на плоскости VС-4.

Модуль SNL обеспечивает соединения между линейными, линейными и трибутарными, а также между трибутарными потоками.

В модуле OIS16 заголовок секции (SOH) разделяется и записывается во внутреннюю шину ОН системы, обеспечивая таким образом доступ к ОН соответствующих модулей. DCC взаимодействует через вторую внутреннюю систему шин, через DCC-шину.

 


Рисунок 3.1 - структурная схема основных узлов мультиплексора SLD 16


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: