Исходные данные для проектирования

Введение

 

Вентильный электродвигатель – это тип синхронной машины, реализованный в замкнутой системе с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя. Часто их также называют бесконтактными двигателями постоянного тока или обращенной машиной постоянного тока. Этот тип двигателя создан с целью улучшения свойств двигателей постоянного тока.

В вентильном двигателе (ВД) индуктор находится на роторе (в виде постоянных магнитов), якорная обмотка находится на статоре. Напряжение питания обмоток двигателя формируется в зависимости от положения ротора. Если в двигателях постоянного тока для этой цели использовался коллектор, то в вентильном двигателе его функцию выполняет полупроводниковый коммутатор.

Основным отличием ВД от синхронного двигателя является его самосинхронизация с помощью ДПР, в результате чего у ВД частота вращения поля пропорциональна частоте вращения ротора, которая зависит от напряжения питания.

Статор.

Статор имеет традиционную конструкцию и похож на статор асинхронной машины. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки уложенной в пазы по периметру сердечника. Количество обмоток определяет количество фаз двигателя. Обычно это трехфазные, реже четырехфазные двигатели.

По способу укладки витков в обмотки статора различают двигатели имеющие обратную электродвижущую силу трапецеидальной и синусоидальной формы. По способу питания фазный электрический ток в соответствующих типах двигателя также изменяется трапецеидально или синусоидально.

Ротор.

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до восьми пар полюсов с чередованием северного и южного полюсов.

Вначале использовались ферритовые магниты для изготовления ротора. Они распространены и дешевы, но им присущ недостаток в виде низкого уровня магнитной индукции. Сейчас получают популярность магниты редкоземельных сплавов, так как они позволяют получить высокий уровень магнитной индукции и уменьшить размер ротора.

В двигателях большой мощности вместо постоянного магнита на роторе используется электромагнит. Напряжение питания к нему подается через контактные кольца установленные на роторе.

Датчик положения ротора.

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в двигателе постоянного тока. Его работа может быть основана на разных принципах – фотоэлектрический, индуктивный, на эффекте Холла, и т.д. Наибольшую популярность приобрели датчики Холла и фотоэлектрические, так как они практически безынерционны и позволяют избавиться от запаздывания в канале обратной связи по положению ротора.

Фотоэлектрический датчик, в классическом виде, содержит три неподвижных фотоприемника, которые поочередно закрываются шторкой вращающейся синхронно с ротором. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора. Сигналы датчиков преобразуются управляющим устройством в комбинацию управляющих импульсов, которые управляют силовыми ключами, так, что в каждый такт (фазу) работы двигателя включены два ключа и к сети подключены последовательно две из трех обмоток якоря. Обмотки якоря U, V, W расположены на статоре со сдвигом на 1200 и их начала и концы соединены так, что при переключении ключей создается вращающееся магнитное поле.

Исходные данные для проектирования

 

Для дальнейшего исследования в качестве исследуемого двигателя примем высокомоментный двигатель ДВУ2М215М-Ф мощностью 3 кВт и частотой вращения 3000 об/мин., характеристики которого представлены в таблице №1.

Условное обозначение двигателя серии ДВУ: ДВУ — двигатель вентильный управляемый, где 215 — диаметр окружности расположения центров отверстий на крепительном фланце; М—условная длина сердечника статора.

 

Таблица №1.

Тип двигателя ДВУ2М215М-Ф[1] (для приводов подачи станков)

Максимальная частота вращения nmax, об/мин 3000 Электромеханическая пост. времени Тм, мс 4,1
Вращающий момент при nmax М, Нм 40 Электромагнитная пост. времени Те, мс 16,4
Номинальный момент при n=500 об/мин Мdo, Нм 47 Тепловая постоянная времени Тт, мин 80
Длительный момент при n=0 Мо, Нм 48 Постоянная вращ. момента при 20С0 Км,Нм/А 1,37
Номинальный ток фазы при 20С0 Ido, А 36 Сопротивление фазы при 20С0 Rф, Ом 0,095
Максимальный ток Imax, A 95 Индуктивность 2-х фаз последовательно L, мГн 3,1
Масса двигателя исполнение Т1, кг 57 Момент инерции ротора J, кгм2 0.0225

 

Рассчитаем параметры элементов силовой цепи.

Эквивалентное активное сопротивление двух фаз статора двигателя, включенных последовательно:

 

Rэ=Rдв =2 Rф = 2*0,095 = 0,19 Ом.

 

Индуктивность двух фаз статора двигателя:

Lдв =3,1 мГн.

 

Электромагнитная постоянная времени якорной цепи:

 

.

 

Номинальная скорость вращения двигателя:

 

.

 

Суммарный момент инерции привода:

 

.

 

Механическая постоянная времени:

 

.

 

Коэффициент обратной связи по скорости:

 

, примем

 

Коэффициент обратной связи по току:

Зададимся условиями ограничения параметров системы и примем

 


С учетом этих условий примем коэффициент обратной связи по току:

 

 

Примем km=0.1.

 

 - коэффициенты пропорциональности между током и моментом; между угловой скоростью и ЭДС.

 - коэффициент передачи преобразователя.

 - число пар полюсов.





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: