Примеры Решения задач второй группы

Пример 2.3.1 Косозубое цилиндрическое колесо передает на вал номинальный вращающий момент Т = 400 Н м. На зубья колеса действуют силы: окружная Ft = 4000 H; радиальная Fr, =1500 H и осевая Fa = 1000 Н; точка приложения этих сил расположена в середине зубчатого венца колеса на диаметре . Размеры деталей соединения даны на рисунке 4.11. Материал колеса и вала: сталь 40Х, термообработка - улучшение, твердость поверхности 240... 260 НВ, пределы текучести  = 650 МПа. Сборка осуществляется запрессовкой. Требуется подобрать стандартную посадку для передачи заданной нагрузки.

Решение. 1. Коэффициент запаса сцепления принимаем K = 3, так как на соединение действуют циклические напряжения изгиба. Напряжения изменяются потому, что силы Ft, Fr и Fa в пространстве неподвижны, а соединение вал-колесо вращается.

2. Коэффициент трения f = 0,08 (см. табл. 2.3), так как детали соединения стальные без покрытий и сборка осуществляется под прессом (запрессовка).

3. Действующий на соединение изгибающий момент от осевой силы Fa  на колесе равен

MИ = Fa  / 2 = 1000×200 / 2 = 100 Н×м = 100000 Н×мм.

4. Потребное давление для передачи вращающего момента Т и осевой силы Fa определяем по формулам (2.1) и (2.2)

 

 = 47,5 МПа.

5. Потребное давление для восприятия изгибающего момента MИ из условия нераскрытия стыка находим по формуле (2.3)

 

 = 6,09 МПа.

Для дальнейшего расчета в качестве потребного давления P выбираем большее значение, т. е. P = P 1 = 47,5 МПа.

6. Расчетный теоретический натяг определяем по формуле Ляме (2.4)

.

Посадочный диаметр соединения d = 60 мм (см. рис. 2.11), вал сплошной стальной с параметрами: d = 60мм; d 1 = 0;  = 0,3; E 1 = 2,1×105 МПа; ступица (зубчатое колесо) стальная с параметрами: d 2 = 95мм; d = 60 мм;  = 0,3; E 2 = 2,1×105 МПа, здесь условно принимают наружный диаметр d 2  охватывающей детали равным диаметру ступицы зубчатого колеса.

Тогда по формулам (2.5), (2.6) коэффициенты

 

 = 1 – 0,3 = 0,7;

 

 = 2,63.

При этих параметрах потребный расчетный теоретический натяг равен (2.4)

 = 45,2 мкм.

7.Поправка на обмятие микронеровностей (2.9) составляет

u  = 5,5·(Ra1 + Ra2)= 5,5·(0,8 + 1,6) = 13,2 мкм,

где Ra1 = 0,8, Ra2 = 1,6 согласно рис. 4.11.

8. Температурную поправку  принимаем равной нулю. Минимальный натяг, требуемый для передачи заданной нагрузки, равен (2.11)

 = 45,2 + 13,2 + 0 = 58,4 мкм.

9. Давление на поверхности контакта, при котором эквивалентные напряжения в ступице колеса достигают значения предела текучести материала ступицы  = 650 МПа, находим по формуле (2.14)

МПа.

10. Расчетный натяг, соответствующий давлению [ P ] max, т. е. натяг, при котором эквивалентные напряжения у внутренней поверхности ступицы достигнут предела текучести материала ступицы, составляет (2.13)

 = 185,9 мкм.

 

11. Максимально допустимый натяг (2.12) по условию отсутствия зон пластических деформаций у охватывающей детали (ступице зубчатого колеса) равен

    N max = [dmax]+ и = 185,9 + 13,2 = 199,1 мкм

    12. Для образования посадок принимаем систему отверстия. Допускаем вероятность появления (риск появления) больших и меньших натягов 0,14%, т.е. принимаем надежность Р (t) = 0,9986. Условия пригодности посадки

              N  min ≥ N Р min  ; N Р maxN max .

    13. В табл. Б10, из числа рекомендуемых стандартных посадок пригодна посадка Ø 60 Н7/u7, для которой вероятностный минимальный натяг N Р min   = 66 мкм больше минимального натяга, требуемого для передачи заданной нагрузки, N  min= 58,4 мкм, а максимальный вероятностный натяг N Р max= 108 мкм меньше максимального натяга по условию отсутствия пластических деформаций у ступицы колеса N max  = 199,1 мкм.

    Прочность деталей соединения, в частности ступицы зубчатого колеса, проверять не надо, так как у выбранной посадки максимальный вероятностный натяг N И min=108 мкм. При таком натяге эквивалентные напряжения в ступице будут меньше предела текучести, поскольку эквивалентные напряжения в ступице достигают предела текучести при натяге 199,1 мкм.

Пример 2.3.2  Рассчитать и сконструировать заклепочное соединение внахлестку двух полос с размерами в сечении b ´ d = 150 ´ 6 (рис. 4.12); сила F, действующая на соединение, приложена по оси симметрии листов и равна 80 кН. Материал листов сталь ст 3, заклепок - сталь ст 2.

 

Решение. 1. Расчет ведем для прочного заклепочного соединения.

Определим диаметр заклепок

  d0  = (1,8... 2)· d = (1,8... 2)·6 = 10,8...12 мм.

Примем d0 =12мм.

2. Определим максимальную нагрузку на одну заклепку из условия среза

 

F1 ¢= Ak ∙[ tСР ] = 113×1×140 = 15820 Н;

 

где:  мм2.

3. Необходимое число заклепок

 = 5,05.

Принимаем число заклепок z = 6.

Чтобы уменьшить влияние изгиба на прочность соединения, располагаем заклепки в 2 ряда по 3 в каждом (см. рис. 4.12).

4. Определим расстояние от оси заклепки до края листа – e и шаг p между заклепками в ряду

p = 3 ∙ d0 = 3 ∙12 = 36мм, принимаем p = 50 мм

e = 2 ∙ d0 = 2 ∙12 = 24 мм, принимаем e = 25 мм.

5. Проведем проверку по напряжениям смятия

 = 185 МПа  = 280 МПа,

уточнив при этом нагрузку, приходящуюся на одну заклепку 

 = 13300 Н.

6. Проверим прочность листов по ослабленному заклепками сечению А – А

= 117 МПа <  = 160 МПа.

Условие прочности выполнено.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: