Пояснение к заданию №2

 

Для выполнения эксперимента требуются два стальных шарика с равными радиусами   r   и массами   m. Эти параметры шариков указаны отдельно. В опыте один шарик устанавливается на середине механического лотка. Второй шарик вначале устанавливается в верхней точке и затем отпускается и катится вниз по жёлобу до столкновения с первым шариком.

Столкновение в данном случае является центральным, т. к. вектор скорости набегающего шарика расположен (при ударе) на линии, соединяющей центры шариков. При этом столкновение можно считать упругим, т. к. в опыте используются шарики, предназначенные для подшипников качения (потерями энергии при столкновении таких шариков в данном опыте можно пренебречь).

Напомним, что при поступательном движении свободно летящих шаров для расчётов упругих столкновений используются законы сохранения импульса и механической энергии. Как известно, эти расчёты показывают, что при центральном столкновении шаров с равными массами происходит обмен импульсом таким образом, что при ударе летящего шара по неподвижному – движущийся шар полностью теряет свою скорость (останавливается), а другой – получает скорость, равную скорости шара, движущегося до столкновения.

Однако столкновения катящихся шаров происходят иначе. Это объясняется тем, что тела при качении вращаются, и, следовательно, действуют законы сохранения и изменения момента импульса (разумеется, совместно с такими же законами для импульса и энергии).

В опыте, который проводится на установке "Механический лоток", при столкновении шариков наблюдается следующее явление. После удара скатившегося вниз шарика по неподвижному – оба шарика затем начинают катиться в одном направлении, но с разными скоростями. Первый (вначале неподвижный) шарик получает более высокую начальную скорость и катится вверх по жёлобу до остановки на расстоянии, превышающем половину расстояния от нижней до верхней точки жёлоба. Второй шарик после столкновения некоторое время (этот интервал хотя и небольшой, но заметен без специальных приборов) остается на месте, а затем вдруг начинает катиться вслед первому. Начальная скорость движения второго шарика меньше, и он катится вверх по жёлобу, проходя до остановки более короткое расстояние, чем первый шарик.

Примечание. Студентам, интересующимся физикой и механикой, предлагается самостоятельно описать физический механизм наблюдаемого явления. Решить соответствующую систему уравнений динамики и доказать, что при центральном упругом столкновении нормально катящегося шара со скоростью центра масс V0c – с неподвижным шаром (радиусы и массы шаров равные) получается следующий результат:

а) первый (ранее неподвижный) шар начинает нормально катиться со скоростью центра масс V1c = 5/7 V0c, (учесть, что нормальное качение начинается не сразу после удара при столкновении);

б) второй шар (имевший перед столкновением скорость центра масс V0c) начинает нормально катиться вслед за первым со скоростью центра масс V2c = 2/7 V0c (учесть, что нормальное качение начинается не сразу после удара при столкновении).

Расчёты выполнять для столкновения на горизонтальной поверхности, т. к. удар по неподвижному шару в проводимом опыте происходит на горизонтали – в нижней части механического лотка. Объяснить причину уменьшения суммарной кинетической энергии шаров после столкновения по сравнению с кинетической энергией до столкновения.

Первая цель эксперимента в задании №2 состоит в сравнении начальной кинетической энергии нормального качения шариков после столкновения с потенциальной энергией шариков в моменты остановок после качения вверх по жёлобу.

Считаем известным, что угловые скорости шариков в начале нормального качения после столкновения определяются выражениями:

 

                                                         (20)

 

Здесь: ω01 – угловая скорость первого шарика (покоящегося до столкновения);

     ω02 – угловая скорость второго шарика, имевшего до столкновения скорость ω0.

Формулы (20) верны только для центрального упругого столкновения шаров с равными радиусами и массами.

Угловая скорость ω0 определяется в опыте с помощью уравнения энергетического баланса:

,                                          (21)

 

где: h0 – высота подъёма центра масс второго шарика в момент пуска;

 – кинетическая энергия второго шарика в момент времени перед столкновением;

Es – потери энергии при качении, которые можно рассчитать приближённо по формуле:  (здесь: lc – длина пути центра масс от точки пуска до точки столкновения; δ – коэффициент сопротивления качению, найденный в Задании №1; α – угол наклона плоскости качения).

Напомним, что потери энергии можно вычислять более точно, разделяя движение шарика на качение по поверхности с постоянным углом наклона α и по дуге окружности радиусом R1. Однако в данном опыте достаточно приближённого расчёта величины Es.

После определения угловой скорости ω0 вычисляются (с учётом (20)) значения начальной механической энергии нормального качения шариков после столкновения:

 

                                         (22)

 

Здесь учтено, что механическая энергия равна кинетической энергии шариков, т. к. столкновение происходит в нижней точке спуска.

Если принять условие, что дальнейшее качение шариков происходит без потерь механической энергии (т. е. сопротивлением качению можно пренебречь), тогда, используя закон сохранения механической энергии, получим:

 

                                                         (23)

 

где h1* и h2* – теоретические высоты подъёма центров масс шариков в момент остановки (после качения без потерь энергии).

Значения h1* и h2* легко вычислить, использую формулы (23) и данные о величине ω0. Однако в опыте будут получаться значения высот h1 < h1* и h2 < h2*, т. к. имеются потери энергии, равные работе As момента сопротивления качению. Работы As1 и As2 моментов сопротивления при качении первого и второго шариков до остановки определяются с учётом результатов опыта по формулам:

 

                                                (24)

 

Второй целью эксперимента в задании №2 является опытное подтверждение соотношения начальных скоростей качения шариков после столкновения. Согласно формулам (20) отношение начальных угловых скоростей равно:

                                                 (25)

 

Заметим, что это соотношение верно также и для скоростей центров масс шариков после столкновения.

Легко проверить, применяя формулы (22) и (23), что для отношения высот h1* и h2* получается:

 

                                                (26)

 

В опыте измеряются реальные высоты подъёма центров масс шариков, совершающих качение при наличии сопротивления. Потери энергии при качении шариков до остановки на высотах h1 и h2 вносят некоторое отклонение от теоретического значения отношения скоростей ω01 и ω02, определяемого формулой (25). Такие отклонения составляют обычно несколько процентов и могут быть учтены строгим расчётом работы момента сопротивления качению. Однако в данной работе достаточно качественного подтверждения соотношения (26) с использованием значений высот h1 и h2, найденных в эксперименте.

 

4.1.2. Измерения и обработка результатов

 

4.4.1. Установите первый шарик в нижней части жёлоба так, чтобы его центр находился на расстоянии (5 – 10) мм слева от начала шкалы отсчёта. Эту точку установки не всегда удается фиксировать в опыте постоянной и по этой причине необходимо занести в таблицу 2-1 её положение в виде начальной координаты x01 центра масс первого шарика.

4.4.2. Установите второй шарик в верхней части жёлоба справа. Отметьте положение центра масс шарика на шкале в виде расстояния l0 (значение l0 будет повторяться в следующих опытах, так что эту величину можно записать один раз).

4.4.3. Отпустите (без толчка) второй шарик и наблюдайте за его качением и последующим столкновением с первым шариком в нижней точке спуска.

4.4.4. После столкновения первый и второй шарики начинают катиться влево, поднимаясь по жёлобу вверх, и затем останавливаются. Зафиксируйте и занесите в таблицу 2-1 отсчёты по шкале в виде координат x1 и x2 центров масс первого и второго шариков в моменты их остановок в верхней точке подъёма.

4.4.5. Повторите опыты 10 раз, занося результаты отсчётов по шкале в таблицу 2-1.

                                                                                                                       Таблица 2-1

х, см

Номер опыта

<x>,

см

1 2 3 4 5 6 7 8 9 10
x01                      
x1                      
x2                      

 

Таблица 2-1 содержит результаты прямых измерений. Обработка этих результатов состоит в определении средних значений < x01>, <x1> и <x2>, которые следует занести в последнюю графу таблицы 2-1.

Все остальные данные получаются с помощью формул, т. е. являются результатом косвенных измерений. Погрешности измерений вычисляются по отдельному указанию преподавателя. Основные расчёты выполняются для средних значений по формулам, приведённым в разделе "Пояснение к заданию №2".

Вначале следует найти значения высот h0, h1 и h2, используя для этого данные опыта (т. е. значения l0, <x1> и <x2>) и схему установки, имеющуюся в лаборатории.

Вычислите длину пути центра масс lc при скатывании второго шарика до столкновения с первым по формуле: lc = l0 – <x02>, где < x02> = 2r – <x01> – средняя координата центра масс второго шарика в момент столкновения.

Используя уравнение энергетического баланса (21), найдите величину w0. Затем вычислите значения начальных кинетических энергий Т01 и Т02 шариков после столкновения и значения высот h1* и h2* подъёма шариков по жёлобу при отсутствии потерь механической энергии.

По формулам (24) вычислите работу моментов сопротивления качению, определяющую потери энергии при качении шариков до остановки после столкновения.

Последний результат: соотношение скоростей шариков после столкновения – определяется с помощью формулы (26), куда подставляются значения высот h1 и h2, найденные в опыте.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: