Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

 В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

 

Вот еще  Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке- 50, в воздухе- 330, в воде- 1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

 На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

 Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

 В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

Акустическим сопротивлением (АС) газообразной, жидкой или твердой среды называют отношение звукового давления в бегущей плоской волне к колебательной скорости частиц среды.

Реверберация — это процесс постепенного уменьшения интенсивности звука при его многократных отражениях.

Сущность реверберации состоит в том, что исходный звуковой сигнал смешивается со своими копиями, задержанными относительно него на различные интервалы времени

Удельное акустическое сопротивление упругой среды — величина, равная отношению амплитуды звукового давления в среде к колебательной скорости её частиц при прохождении через среду звуковой волны:

 Единица измерения — паскаль-секунда на метр (Па•с/м)

20. Ухо — сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 — 20 000 Гц (колебаний в секунду). В процессе эволюционного развития ухо возникло у первичноводных предков позвоночных из особых кожных органов чувств (Боковые органы ).

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина — сложной формы упругий хрящ, покрытый кожей, его нижняя часть, называемая мочкой,- кожная складка, которая состоит из кожи и жировой ткани. Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна. Но вот многие звери, поводя ушами, способны гораздо точнее, чем человек, определить нахождение источника звука. Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов. Функция ушной раковины — улавливать звуки; ее продолжением является хрящ наружного слухового прохода, длина которого в среднем составляет 25-30 мм. Хрящевая часть слухового прохода переходит в костную, а весь наружный слуховой проход выстлан кожей, содержащей сальные, а также серные железы, представляющие собой видоизмененные потовые. Этот проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания. В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Среднее ухо. Основной частью среднего уха является барабанная полость — небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко — они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их. Слуховые косточки — как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком — со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом. Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями или если в этот момент дуть в зажатый нос.

Барабанная перепонка — тонкая, непроницаемая для воздуха и жидкости мембрана, разделяющая наружное и среднее ухо. Служит для передачи звуковых колебаний во внутреннее ухо, а также препятствует попаданию в барабанную полость инородных тел. Имеется у наземных позвоночных (за исключением хвостатых и безногих земноводных, роющих змей). У людей расположена в глубине наружного слухового прохода.

Евстахиева труба — канал, сообщающий полость среднего уха с глоткой. Морфологически Евстахиева труба представляет часть жаберной щели, а физиологически служит для уравновешивания разницы атмосферного давления извне и в полости среднего уха.

Слуховых косточек три: молоточек, наковальня и стремечко. Все они соединены между собою очень совершенными сочленениями (истинные суставы) в виде очень подвижной цепи - от перепонки до овального окна - и служат для передачи на лабиринт звуковых волн, особенно для низких тонов.

Функция среднего уха: Полость среднего уха. Важным условием для правильной работы звукопроводящей системы является наличие одинакового давления по обе стороны барабанной перепонки. При повышении или понижении давления как в полости среднего уха, так и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление повышается и слух понижается. Выравнивание давления по обе стороны барабанной перепонки обеспечивается вентиляционной функцией слуховой трубы. При акте глотания или зевания слуховая труба открывается и становится проходимой для наружного воздуха в полость среднего уха. Учитывая, что слизистая оболочка среднего уха постепенно всасывает воздух, нарушение вентиляционной функции слуховой трубы ведет к превышению наружного давления над давлением в среднем ухе, что вызывает втяжение барабанной перепонки внутрь. В связи с этим нарушается звукопроведение и возникают патологические изменения в среднем ухе.

21. На поперечном срезе улитковый канал имеет форму треугольника, вершиной обращенного к центральному костному стержню улитки. Улитковый канал, имеющий длину около 3,5 см, по спирали делает 2,5 завитка, слепо заканчиваясь на верхушке улитки. Канал заполнен эндолимфой. Снаружи от улиткового канала находятся пространства, называемые лестницами: сверху — вестибулярная (преддверная), снизу — барабанная (тимпанальная). Вестибулярная лестница отделяется от полости среднего уха овальным окном, в котором располагается основание стремечка.

Как было уже сказано, в улитке совершается процесс преоб­разования колебательных движений в форму энергии, стимули­рующую рецепторную систему слухового анализатора. В этом процессе предварительный этап составляют элементы звукопро­ведения, главными участниками которого являются лабиринтные жидкости (пери- и эндолимфа) и структурные элементы пере­пончатого лабиринта, главным образом основная мембрана.

Барабанная лестница отделяется от полости среднего уха посредством мембраны круглого окна. Стенка улиткового канала, обращенная к вестибулярной лестнице, называется вестибулярной мембраной. Она представлена соединительнотканной пластинкой, покрытой со стороны улиткового канала однослойным плоским эпителием, а со стороны вестибулярной лестницы — эндотелием. Боковая стенка улиткового канала выстлана так называемой сосудистой полоской. Эпителий представляет собой многорядный эпителий, среди клеток которого различают плоские светлые и высокие отростчатые призматические клетки. Последние в своей цитоплазме содержат многочисленные митохондрии и выглядят темными клетками. Среди клеточных дифферонов сосудистой полоски обнаружены нейроэндокриноциты APUD-серии, вырабатывающие серотонин, мелатонин, адреналин и др., которые участвуют в регуляции объема эндолимфы. Здесь же идут многочисленные кровеносные капилляры. С сосудистой полоской связывают насыщение эндолимфы кислородом, создание определенного ионного состава и объема эндолимфы и др., что необходимо для нормальной функции органа. Стенка улиткового канала, примыкающая к барабанной лестнице, имеет очень сложное строение, так как на ней расположен спиральный орган — рецептор звука. Основу этой стенки улиткового канала составляет базилярная мембрана. Ее поверхность, обращенная в барабанную лестницу, покрыта тонким слоем эндотелия. Базилярная мембрана — это соединительнотканная пластинка. В виде спирали она тянется вдоль всего канала улитки. Структурными элементами базилярной мембраны являются тонкие коллагеновые волокна — слуховые струны. Общее число их достигает 24 000.Они располагаются между спиральной костной пластинкой, отходящей от осевого стержня улитки, и спиральной связкой, расположенной на наружной стенке улитки. Длина слуховых струн неодинакова: у основания улитки они короче, а на вершине улитки — в 5 раз длиннее. Коллагеновые волокна (струны) окружены гомогенным основным промежуточным веществом. Базилярная мембрана со стороны улиткового канала покрыта пограничной базальной мембраной, на которой лежит эпителиальноглиальный спиральный орган.

Теория Бекеши. Теория, объясняющая первичный анализ звуков в улитке сдвигом столба пери- и эндолимфы и деформацией основной мембраны при колебаниях основания стремени, распространяющихся по направлению к верхушке улитки в виде бегущей волны.

 

Рис. 8. Ушной лабиринт (по Л. В. Нейман): 1 - улитка; 2 - преддверие; 3, 4, 5 -полукружные каналы — соответственно верхний, наружный, задний

Рис. 11. Поперечный разрез через завиток улитки: 1 - основная мембрана; 2 - волокна основного нерва; 3 - костная стенка улитки; 4 - слуховые (волосковые) клетки; 5 - поддерживающие клетки; 6 - покровная мембрана; 7 - рейснерова мембрана; 8 - преддверная лестница; 9 - барабанная лестница; 10 - улитковый ход и расположенный в нем кортиев орган.

22. Перкуссия заключается в постукивании отдельных участков тела и анализе звуковых явлений, возникающих при этом. По характеру свойств звука врач определяет топографию внутренних органов, физическое состояние и отчасти их функцию.

Физическое обоснование перкуссии было дано чешским врачом Иозифом Шкодой в 1839 году. Звуки можно разделить на тоны и шумы. Чистый тон — условное понятие. Это колебание одной амплитуды и частоты. В природе чистые тоны не встречаются. Шум представляет собой сумму различных по свойствам звуков, где нельзя выделить основной тон.

Существует три основных перкуторных звука: громкий или ясный легочный, в норме получаемый при выстукивании грудной клетки над лёгкими, тихий или тупой, выслушиваемый при перкуссии мягких, безвоздушных неупругих органов, и тимпанический, напоминающий звук от удара в барабан, который получают при выстукивании содержащих воздух гладкостенных полостей и полых органов, содержащих воздух.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: