Интегрирование комплексных функций

       Возможны разные подходы к определению понятия интеграла от комплексной функции. Так, например,  - функции двух переменных, тогда можно вычислять двойные интегралы от них по некоторой плоской области, и объединять результаты в комплексное число вида . Однако в качестве основного всё же исторически был принят метод интегрирования по кривой, именно при таком подходе возможно введение понятия первообразной , а также получают применение многие факты из теории векторного поля. Итак, определение интеграла и метод его вычисления:

 

       Определение. Пусть в области  задана некоторая функция  (не обязательно аналитическая), и в области  расположена кусочно-гладкая кривая  (не обязательно замкнутая). Введём разбиение кривой на n частей с помощью (n-1) внутренних точек. Таким образом, получилась последовательность точек , расположенных по порядку на кривой, где  - начальная и конечная точки. Обозначим . Выберем на каждом участке дуги какую-то точку  и составим интегральную сумму: . Предел интегральных сумм при измельчении разбиения, т.е. при , называется интегралом от функции  по кривой  и обозначается .

 

       Метод вычисления. При вычислении необходимо разбить на действительную и мнимую части как функцию, так и дифференциал, затем раскрыть скобки и получить 4 слагаемых. Но их можно объединить по два, в двух из них нет мнимой единицы, а в двух она есть:

= .

Таким образом, при вычислении всё сводится к двум криволинейным интегралам 2-го рода от векторных полей  и , а мнимая единица умножается на второй из них, при этом в самих вычислениях она фактически не участвует.

 

Некоторые свойства.

1. Линейность  = .

2. Если кривая АС разбита на две части некоторой точкой В, то:

3. .

4. Если  то , где  - длина кривой АВ.

Пример. Вычислить интеграл

А) по прямолинейному отрезку от 0 до .

Б) по параболе от 0 до .

Решение.

А)  =  =

, далее вычисляем 2 криволинейных интеграла по отрезку, на котором , заменяем , .

При этом .  =  = .

Б) Исходное раскрытие скобок происходит так же, как и в прошлом случае:   но теперь линия  это не отрезок, заданный явным уравнением , а парабола, заданная явным уравнением . Поэтому заменяем , .

 =  =

 = .

Ответ. по отрезку: 1, по параболе: .

       Как видим, в зависимости от формы кривой могут получиться разные ответы, но это здесь потому, что функция не аналитическая, она содержит , а мы доказывали теорему 4 в конце прошлого § о том, что аналитичность равносильна отсутствию  в составе функции, то есть тому, что .

 

ЛЕКЦИЯ № 10. 17.03.2020

Вычислим интеграл от комплексной функции по замкнутому контуру. 

Пример. Вычислить , где  - окружность радиуса  вокруг точки .

 

Решение. Представим функцию в виде . Движение по такой окружности можно задать формулами:

В этом случае . Тогда

=  =  =

домножим на сопряжённое,  =

  , можно сократить , а также вместо суммы квадратов sin и cos будет 1.

 =

= =  = .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: