Термодинамическое равновесие.Термодинамич параметры системы.Температура. Температурная шкала Кельвина. Абсолютный нуль

Совокупность тел любой физической природы и химического состава характериз некоторым числом макроскопических параметров наз термодинамической системой. Для описания простейшей термодинамич системы необходимо знать ее температуру t, объем V и давление p так называемые термодинамич параметры. Система предоставленная самой себе по прошествии некоторого времени приходит в состояние в котор каждый параметр имеет одинаковое значен во всех точках системы и остается неизменным с теч t. Такое состояние наз равновесным. Возможны и такие состояния системы в котор какой-либо из параметров имеет неодинаковые значения в ее различных точках т.е. не существует единого значения данного параметра для всей системы. В этом случае равновесие еще не установилось и такое состояние наз неравновесным. Температура – скаляр физ велич характериз состояние термодинамич равновес макроскопической системы. Она определяет не только степень нагретости но и способность системы находиться в термодинамич равновесии с друг системами. Согласно опытным данным температура t=-273°C наз абсолютным нулем t. Если за начало отсчета новой t шкалы T принять точку абсолютного нуля t, то отсчет в ней будет идти только в сторону положительных значений. Введенная таким образом шкала наз шкалой Кельвина. Для перевода из цельсия в кельвины T=t+273.

Закон Бойля-Мариотта.Графич изображ изотермического процесса.

Термодинамич процесы проходящие в газ с неизменным количеством вещ при фиксированном значении одного из параметров (V, p, T) наз изопроцессами. T=const, m, M=const. pV=const – закон Бойля-Мариотта. Согласно закону. V дан колич газа при постоян t обратно пропорционал его давлению. Изотермический прцес при постоян t. График Oy –P; ox-V; 2 изогнутых; у той что выше леж буде больш T.

Закон Гей-Люссака.Графич изображен изохорного процесса.

Термодинамич процесы проходящие в газ с неизменным колич вещ при фиксированном значении одного из параметров наз изопроцессами. Закон: p дан колич газа при постоян V линейно зависит от t. График Oy-p; ox-T. Прямые вых из 0 в прав верх угол. Больший V у той что леж ниже. Изохорный при постоян V.

Закон Шарля.Графич изображен изобарного процеса.

Термодинамbx процесы проходящие в газ с неизменным колич вещ при фиксированном значении одного из параметров (V, p, T) наз изопроцессами. Закон: V дан колич газа при постоян p линейно зависит от t. Изобарный при постоян давлен. График: oy-V; ox-T. Прямые вых из 0 в прав верх угол. Больш давлен у той что лежит ниже.

Уравнение состояния идеального газа.

Согласно закону Бойля-Мариота имеем p1V1=pxV2. По закону Гей-люсака p2=px(T2/T1). Выразим px из закон Бойля-Мариота px=(p1V1)/V2. Подставим px в закон Гей-Люсака - p1V1/T1=p2V2/T2 - из уравнения => что при T=0K идеальный газ не оказывает давления на стенки сосуда в который он заключен т. е. должно прекратится тепловое движение его молекул. Т. к. при низких давлениях свойства реальных газов близки к идеальному то это относится и к реальным газам.

Универсальная газовая постоянная.Плотность газа.

Расмотрим один моль газа при нормальных условиях. В соответствии с законом Авогадро один моль любого газа занимает при нормальных условиях один и тот же объем V0=22.4 л. => для одного моля любого газа соотношение р0V0/T0 имеет одно и то же значение, обозначаемое R и называемое универсальной газовой постоянной: const=R=р0V0/T0=8,31Дж/моль*К. Газ может находиться в различных состояниях однако в физике четко фиксированы нормальные давление и температура соответствующие следующим значениям: р0=1 атм=1.01*105 Па=760 мм рт.ст и Т0=273 К.

Работа газа в термодинамике. 

Для вычисления механич работы совершаемой термодинамическими системами расмотрим идеальный газ под поршнем в цилиндре. Пусть под действием силы давления газа F поршень поднялся на высоту h. При этом совершена работа A=Fh. Сила давления действующ со стороны газа на поршень площадью поперечного сечения S, F=pS, где p-давление газа. => работа газа A=pSh=pΔV. ΔV=Sh - изменение объема газа в цилиндре при перемещении поршня. Работа измеряется в джоулях. Полная работа газа при произвольном процесе = площади под всем графиком от начального состояния до конечного. Работа в термодинамике является функцией процесса и не является функцией состояния. 

Понятие внутренней энергии в термодинамике.Способы изменения внутренней энергии.

Внутренняя энергия – это сумма потенциальной Е взаимодействия частиц, составляющих тело, и кинетической Е их беспорядочного теплового движения. Кинетическая Е теплового движения частиц пропорциональна температуре, а потенциальная Е взаимодействия частиц зависит от расстояния между частицами, т. е. от объема тела => внутренняя Е определяется как функция макроскопических параметров тела U=U(T,V). Внутренняя Е идеального газа – определяется как сумма кинетических энергий хаотического теплового двтжения всех молекул газа (Eп=0). U=NE=vNA(3/2)kT=3/2vRT=((3m)/(2M))*RT=3/2pV. При любых процессах в изолированной термодинамической системе внутренняя Е остается неизменной U=const ΔU=0. Есть 2 способа изменения внутренней Е: 1. микроскопический способ (теплопередача), мера переданой Е – кол-во теплоты Q. 2. макроскопический способ (совершение работы) – механическоевзаимодействие, мера переданной энергии A.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: