Выходные каскады с многовыводными катушками зажигания

Реализация многоканального распределения энергии может быть осуществлена в системах зажигания несколькими способами. Наиболее простой из них — применение двухвыводного высоковольтного выходного трансформатора или двухвыводной катушки зажигания в выходном каскаде. Такой способ разделения каналов приемлем для реализации в системе зажигания с любым типом накопителя.

Откуда пришла такая идея? Известно, что в системе зажигания, на выходе которой установлен высоковольтный распределитель, во время разряда накопителя имеют место две искры: одна основная (рабочая) в свече зажигания и другая вспомогательная — между бегунком распределителя и контактом одного из его свечных выводов. Вторичная обмотка выходного трансформатора (катушки зажигания) высоковольтным выводом соединена с центральным бегунком распределителя, а другой вывод обмотки является нулевым, так как во время разряда накопителя соединяется с "массой" автомобиля (см. рис. 3, [1]). Энергия вспомогательной искры в распределителе тратится бесполезно, и эту искру стремятся всячески подавить. Отсюда ясно, что вспомогательную искру из-под крышки распределителя можно перенести во вторую свечу зажигания, соединив ее с первой через массу головки блока цилиндров последовательно. Для этого достаточно исключить распределитель из выходного каскада, отсоединить от массы автомобиля заземляемый вывод катушки зажигания и подключить к нему вторую электроискровую свечу (рис. 8).

 

При одновременном искрообразовании в двух свечах зажигания одна искра является высоковольтной (12...20 кВ) и воспламеняет топливовоздушную смесь в конце такта сжатия (рабочая искра). При этом другая искра низковольтная (5...7 кВ), холостая. Явление перераспределения высокого напряжения от общей вторичной обмотки между искровыми промежутками в двух свечах зажигания есть следствие глубоких различий условий, при которых происходит искрообразование. В конце такта сжатия незадолго до появления рабочей искры температура топливовоздушного заряда еще недостаточно высокая (200...300°С), а давление, наоборот — значительное (10...12 атм). В таких условиях пробивное напряжение между электродами свечи — максимально. В конце такта выпуска, когда имеет место искрообразование в среде отработавших газов, пробивное напряжение минимально, так как температура выхлопных газов высокая (800...1000°С), а давление низкое (2...3 атм). Таким образом, при статическом распределении высокого напряжения с помощью двухвыводной катушки зажигания (на двух последовательно соединенных свечах — одновременно) почти вся энергия высоковольтного электроискрового разряда приходится на рабочую искру.

• Впервые двухвыводная катушка была применена в контактной батарейной системе зажигания для двухцилиндрового 4-х тактного двигателя. Примером может служить система зажигания для двигателя польского автомобиля ФИАТ-126Р (рис. 9). Аналогичная по принципу действия система зажигания установлена на отечественном автомобиле ОКА (с электронным управлением).

 

Если в ДВС четыре цилиндра, потребуется две двухвыводных катушки зажигания и два раздельных энергетических канала коммутации в выходном каскаде (см. рис. 5). На рис. 10 приведена диаграмма последовательности искрообразования в цилиндрах 4-х цилиндрового четырехтактного двигателя, оснащенного системой зажигания с двумя двухвы-водными катушками зажигания. Для шестицилиндрового двигателя потребуется три двухвыводных катушки зажигания и три энергетических канала.

 

В настоящее время разработан ряд автомобильных систем зажигания, в которых две двухвыводных катушки зажигания собираются на общем Ш-образном магнитопроводе и тем самым образуется одна 4-выводная катушка зажигания (например для автомобиля ВАЗ-2110). Такая катушка имеет две первичных и две вторичных обмотки и управляется от двухканального коммутатора. Четырехвыводная катушка зажигания может иметь и одну вторичную двухвыводную обмотку при двух первичных. Вторичная обмотка такой катушки дооборудована четырьмя высоковольтными диодами — по два на каждый высоковольтный вывод [2].

Недостатком любой системы зажигания с двухвыводными катушками является то, что в одной свече искра развивается от центрального электрода к массовому (боковому), а во второй свече — в обратном направлении (см. рис. 8). Так как центральный электрод заострен и всегда значительно горячее бокового, то истечение носителей заряда с его острия при искрообразовании требует затраты меньшего количества энергии, чем при истечении с бокового электрода (на центральном электроде начинает проявляться термоэлектронная эмиссия). Это приводит к тому, что пробивное напряжение на свече, работающей в прямом направлении, становится несколько ниже (на 1,5.2 кВ), чем на свече с обратным включением полярности. Для современных электронных и микропроцессорных систем зажигания с большим коэффициентом запаса по вторичному напряжению и с управляемым временем накопления энергии это не имеет принципиального значения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: