Необходимые условия сходимости ряда

Тема 4.7. Теория рядов

Понятие числового ряда

Числовым рядом называется выражение вида:

 

(1)

При этом числа  называются членами ряда (1), аn – общим членом ряда.

 

Примеры рядов

Из членов бесконечной геометрической прогрессии можно составить ряд:

- ряд геометрической прогрессии

Если, например, взять a = 1, q = , то получим ряд: 

Ряд  называется гармоническим рядом.

Сумма первых п членов ряда называется частичной суммой ряда.

 

Таким образом, с рядом (1) связывается последовательность его частичных сумм

S 1, S 2, …,Sn, …, где S 1 = а 1, S 2 = а 1 + а 2, … Sn = а 1 + а 2 + … + ап, …

Ряд называется сходящимся, если сходится последовательность его частных сумм, т.е. если существует предел

 

Число S называется суммой ряда.

Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся.

 

Например, ряд геометрической прогрессии сходится, если . Если , то этот ряд сходится только при а = 0, а в остальных случаях расходится.

Гармонический ряд  расходится.

Свойства рядов

Теорема 1. Если ряд  (1) сходится и его сумма равна S, то для произвольного числа с ряд  (2) тоже сходится, и его сумма равна сS. Если же ряд (1) расходится и с ≠ 0, то и ряд (2) расходится.

 

Другими словами: сходимость (расходимость) ряда не нарушится, если все его члены умножить на одно и то же отличное от нуля число.

Теорема 2. Если ряды  (1) и  (3) сходятся и их суммы равны соответственно S1 и S3, то и каждый из двух рядов   сходится и его сумма равна соответственно S1 ± S3.

 

Другими словами: сходящиеся ряды можно почленно складывать и вычитать.

Следствие: Сумма (разность) сходящегося и расходящегося рядов есть расходящийся ряд.

Теорема 3. Если в ряде (1) добавить или отбросить конечное число членов, то полученный ряд сходится или расходится одновременно с данным. В случае сходимости рассматриваемых рядов их суммы отличаются на сумму отброшенных членов.

 

Необходимые условия сходимости ряда

 

1) Если ряд сходится, то общий член ряда аn стремится к нулю (т.е. ). Однако, это условие не является достаточным. Например, гармонический ряд  является расходящимся, хотя его общий член и стремится к нулю.

Если , то ряд расходится.

Пример. Исследовать сходимость ряда

Найдем  - необходимый признак сходимости не выполняется, значит ряд расходится.

 

2) Если ряд (1) сходится, то последовательность его частных сумм ограничена.

Однако этот признак также не является достаточным.

Например, ряд 1 – 1 + 1 – 1 + 1 – 1 + … + (-1)n+1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что

При этом последовательность частных сумм ограничена, т.к.  при любом n.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: