А. Движение крови в капиллярах. Микроциркуляция

Капилляры представляют собой тончайшие сосуды диаметром 5—7 мкм, длиной 0,5— I, I мм. Эти сосуды пролегают в межклеточных пространствах, сообщаясь с клетками органов и тканей организма посредством межклеточ­ной жидкости. Суммарная длина всех капилляров тела человека составляет около 100 000 км, т.е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осуществляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мем­брана.

Скорост ь кровоток а в.капиллярахлевелика — 0,5—1 мм/с. Таким образом, каждая частица крови находится в капилляре примерноКс. Небольшая тол­щина слоя крови (5—7 мкм) и тесный контакт его с клетками органов и тка­ней, а также непрерывная смена крови в капиллярах обеспечивают возмож­ность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

В тканях, отличающихся интенсивным обменом веществ, число капил­ляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых об­мен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть значительно более густая, чем в белом.

Различают два вида функционирующих капилляров. Одни из них обра­зуют кратчайший путь между артериолами и венулами {магистральные ка­пилляры). Другие представляют собой боковые ответвления от первых: они отходят от артериального конца магистральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорости кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях.

Давление крови в капиллярах можно измерить прямым способом: под контролем микроскопа в капилляр вводят тончайшую канюлю, соединен­ную с электроманометром. У челове ка давление на а ртериальном конце к апил ляра равно 32 мм рт. ст., а на венозном^-„15 мм рт. ст., на вершине петли капилляра ногтевого ложа — 24 мм рт. ст. В капиллярах почечных клубочков давление достигает 65—70 мм рт. ст., а в капиллярах, оплетаю­щих почечные канальцы, — всего 14—18 мм рт. ст. Невелико давление в капиллярах легких — в среднем 6 мм рт. ст. Измерение капиллярного дав­ления производят в положении тела, при котором капилляры исследуемой области находятся на одном уровне с сердцем. В случае расширения арте­риол давление в капиллярах повышается, а при сужении понижается.

В состоянии функционального покоя ткани кровь течет лишь в «дежур­ных» капиллярах. Часть капилляров выключена из кровообращения. В пери­од интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.

Регулирование капиллярного кровотока нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов — осу­ществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирую­щих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т.е. соотношение эрит- 316


роцитов и плазмы. При этом общий кровоток через метартериолы и ка­пилляры определяется сокращением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладкие мышечные клетки, расположенные у устья капилляра при его отхождении от метарте- риол) определяет, какая часть крови пройдет через истинные капилляры.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — артериоло-венулярные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капил­лярную сеть. Если анастомозы открываются, то часть крови может посту­пать в вены, минуя капилляры.

Артериоло-венулярные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этого является изменение ка­пиллярного кровотока в коже при повышении (свыше 35 °C) или пониже­нии (ниже 15 °C) температуры окружающей среды. Анастомозы в коже от­крываются, и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.

Структурной и функциональной единицей кровотока в мелких сосудах является сосудистый модуль — относительно обособленный в гемодинами­ческом отношении комплекс микрососудов, снабжающий кровью опреде­ленную клеточную популяцию органа. При этом имеет место специфич­ность васкуляризации тканей различных органов, что проявляется в осо­бенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в от­дельных микроучастках тканей.

Микроциркуляция — собирательное понятие. Оно объединяет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровото­ком обмен водой и растворенными в ней газами и веществами между кро­вью и тканевой жидкостью.

Специального рассмотрения заслуживают процессы обмена между кро­вью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000—9000 л крови. Через стенку капилляров профильтровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Закономерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описа­ны Старлингом. Гидростатическое давление крови в капиллярах (Ргк) яв­ляется основной силой, направленной на перемещение жидкости из ка­пилляров в ткани. Основной силой, удерживающей жидкость в капилляр­ном русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и он­котическое давление тканевой жидкости (Рот).

На артериальном конце капилляра Ргк составляет 30—35 мм рт. ст., а на венозном — 15—20 мм рт. ст. Рок на всем протяжении остается относитель­но постоянным и составляет 25 мм рт. ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный процесс — ее реабсорбция. Определенные кор­рективы вносит в этот процесс Рот, равное примерно 4,5 мм рт. ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная величина Ргт (-3—9 мм рт. ст.).

Следовательно, объем жидкости, переходящей через стенку капилляра за одну минуту (V), при коэффициенте фильтрации К равен:

V = (Ргк + Рот + Ргт - Рок) К.


На артериальном конце капилляра V положителен, здесь происходит фильтрация жидкости в ткань, а на венозном — V отрицателен, и жид­кость реабсорбируется в кровь. Транспорт электролитов и низкомолеку­лярных веществ, например глюкозы, осуществляется вместе с водой.

Капилляры различных органов отличаются по своей ультраструктуре, а следовательно, по способности пропускать в тканевую жидкость белки. Так, 1 л лимфы, образующейся в печени, содержит 60 г белка, в миокар­де — 30 г, в мышцах — 20 г и в коже — 10 г. Белок, проникший в ткане­вую жидкость, с лимфой возвращается в кровь. При усиленной функции любого органа или ткани возрастает интенсивность процессов метаболиз­ма и повышается концентрация продуктов обмена (метаболиты) — оксида углерода (СОг) и угольной кислоты, аденозиндифосфата, фосфорной и молочной кислот и других веществ. Увеличивается осмотическое давление (вследствие появления значительного количества низкомолекулярных продуктов), уменьшается величина pH в результате накопления водород­ных ионов. Все это и ряд других факторов приводят к расширению сосу­дов в работающем органе. Гладкая мускулатура сосудистой стенки очень чувствительна к действию этих продуктов обмена.

Попадая в общий кровоток и достигая с током крови сосудодвигатель­ного центра, многие из этих веществ повышают его тонус. Возникающее при центральном действии указанных веществ генерализованное повыше­ние тонуса сосудов в организме приводит к увеличению системного АД при значительном возрастании кровотока через работающие органы.

В скелетной мышце в состоянии покоя на 1 мм2 поперечного сечения приходится около 30 открытых, т.е. функционирующих, капилляров, а при максимальной работе мышцы число открытых капилляров на 1 мм2 возра­стает в 100 раз.

Для оценки параметров движения крови в микрососудах в последние годы получил распространение метод лазерной допплеровской флоумет- рии, основанный на оптическом зондировании тканей монохромати­ческим сигналом и анализе частотного спектра сигнала, отраженного от движущихся в тканях эритроцитов. Регистрируемый при этом сигнал ха­рактеризует кровоток в микрососудах в объеме 1—1,5 мм3 ткани.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: