Брожение

Использование энергии света

Способность использовать энергию света обуславливается наличием у большинства фототрофных микроорганизмов специфических пигментов – бактериохлорофиллов и каротиноидов.

Световая энергии улавливается системой поглощающих свет пигментов и передается на молекулу хлорофилла, которая переходит в возбужденное состояние вследствие перехода одного из электронов на более высокий энергетический уровень. Переходя по цепи переноса, электрон отдает свою энергию системе АДФ-АТФ, в результате чего энергия света трансформируется в энергию макроэргической связи молекулы АТФ, т.е. происходит фотосинтетическое фосфорилирование, которое бывает циклическое и нециклическое. В случае циклического процесса электрон возвращается к исходному донору, отдавая полученную им энергию в процессе перехода через ряд переносчиков по термодинамическому закону, одним из таких переносчиков является цитохром с, обеспечивающий фосфорилирование: АДФ. При нециклическом фосфорилировании возбужденный электрон передается на НАД+ с образованием НАДН2.

У фотосинтетических бактерий донорами водорода для реакций синтезе могут быть как неорганические, так и органические вещества. Фотолитоавтотрофы используют в качестве донора водорода Н2S:

свет

СО2 + Н2S → (СН2О) + Н2О + 2 S

Такой вид фотосинтеза называется фоторедукцией. Основное отличие бактериальной фоторедукции от фотосинтеза зеленых растений и водорослей следующие: бактериальный фотосинтез протекает в анаэробных условиях и не сопровождается выделением кислорода; донором водорода для восстановления СО2 в большинстве случаев является сероводород, а не вода.

Микроскопические водоросли и цианобактерии (как и высшие растения) фотосинтез осуществляют с выделением О2, донором электронов (водорода) служит вода:

свет

СО2 + Н2О → (СН2О) + О2

Особую группу бактерий, осуществляющих фотосинтез, составляют некоторые галобактерии, обитающие в соляных озерах. Это аэробные гетеротрофные микроорганизмы со сложными пищевыми потребностями. В водоемах с высоким содержанием соли создается дефицит кислорода в результате его плохой растворимости в таких условиях. Поэтому галофильные бактерии синтезируют бактериородопсин. При попадании света на этот пигмент происходит выход протонов, что в конечном итоге приводит к синтезу АТФ. Это уникальный механизм фосфорилирования.

Брожение – это способ получения энергии без участия атмосферного кислорода в результате окислительно-восстановительных реакций, в которых органические вещества функционируют как доноры и как акцепторы водорода. Сбраживаться могут не все вещества, а только такие, которые имеют неполностью окисленные (или восстановленные) атомы углерода и поэтому способны подвергаться сопряженному процессу окисления – восстановления, приводящему к выделению энергии. В процессах брожения расщепляются вещества различной степени сложности. Наиболее доступным органическим субстратом для процессов брожения являются гексозы, в частности глюкоза. Брожения более сложных субстратов осуществляется после предварительного расщепления их до глюкозы или продуктов ее превращения. Некоторые микроорганизмы способны извлекать энергию при сбраживании пентоз, жирных кислот, аминокислот. У микроорганизмов есть несколько серий реакций, ведущих к выработке энергии путем расщепления гексоз в условиях анаэробиоза.

Гексозодифосфатный путь. Это наиболее распространенный путь. Назван он так по основному промежуточному продукту этого пути – дважды фосфорилированному сахару - дифосфофруктозе (фруктозо-1,6-фосфат ). Этот путь носит название гликолиза (греч. glikos – сладкий, lisis – расщепление). По имени ученых, расшифровавших основные реакции этого пути, его называют также путь Эмбдена-Мейергофа-Парнаса (ЭМП-путь). В процессе гликолиза синтез АТФ происходит на уровне превращения 1,3-дифосфоглицериновой кислоты в 3-фосфо-глицериновую кислоту и фосфоенолпировиноградной кислоты в пировиноградную кислоту (пируват). В результате расщепления глюкозы в процессе гликолиза расходуется две, а синтезируется четыре молекулы АТФ. Таким образом, общий выход составляет двемолекулы АТФ и две молекулы НАДН2.

Гексозомонофосфатный путь (ГМФ-путь). Система реакций этого пути позволяет использовать в качестве энергетического материала, не только гексозы, но и пентозы. Поэтому путь называется также пентозофосфатный окислительный путь (ПФ-путь). Этот путь необходим также для синтеза рибоз, необходимых для нуклеиновых кислот и других соединений. Эта система реакций носит также название путь Варбурга-Диккенса-Хорекера. Первая часть реакций этого пути представляет окислительный процесс, начинающийся также с фосфорилирования глюкозы, которая затем подвергается дважды дегидрированию и один раз декарбоксилированию. В результате образуется центральный метаболит этого пути – рибулозо-6-фосфат. Дальнейшая серия реакций представляет собой взаимопревращения углеродных соединений. Особенностью распада углеводов по ГМФ-пути является образование НАДФН2, а не НАДН2, как при гликолизе.

У анаэробных микроорганизмов этот путь обычно функционирует параллельно с гликолизом, так как ГМФ-путь сам по себе в анаэробных условиях не приводит к синтезу АТФ. Только у аэробных микроорганизмов этот путь может быть источником энергии после того, как оторванный с помощью НАДФ+, водород поступает в дыхательную цепь.

Кетодезоксифосфоглюконатный путь (КДФГ-путь). Этот путь обнаруживается только у микроорганизмов и представляет собой модификацию гликолиза и ГМФ-пути. По имени ученых, открывших путь, он называется путь Энтнера-Дудорова. Этот путь используется микроорганизмами для получения пировиноградной кислоты (ПВК) более коротким путем. Если при гликолизе для получения ПВК надо пройти девять этапов, то при КДФГ-пути достаточно четырех этапов. У некоторых микроорганизмов этот путь может быть единственным для получения энергии при усвоении сахаров в анаэробных условиях. КДФГ-путь также начинается с фосфорилирования глюкозы и образования АДФ из АТФ. Затем глюкозо-6-фосфат превращается в 6-фосфо-глюконовую кислоту, от которой отщепляется вода и образуется 2-кето-3-дезокси-6-фосфо-глюконовая кислота. Это соединение расщепляется специфической альдолазой на ПВК и 3-фос-фоглицериновый альдегид, окисляющийся в ПВК. При расщеплении глюкозы КДФГ-путем образуется по одной молекуле АТФ, НАДН2 иНАДФН2.

Для анаэробных микроорганизмов представленные процессы являются основной возможностью получения энергии при усвоении сахаров. В зависимости от наличия специфических для каждого вида микроорганизмов ферментов в анаэробных условиях происходит перенос водорода от НАДН2 на ПВК или субстраты, образуемые из ПВК. В результате этого получаются различные восстановленные соединения, называемые продуктами брожения, а соответственно им называются процессы брожения. Различают несколько типов брожения – молочнокислое, маслянокислое, спиртовое и др., которые вызываются соответствующими микроорганизмами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: