Глобальная система позиционирования

GPS (Global Positioning System) - это спутниковая система для высокоточного определения координат статичных и движущихся объектов. Разработана и обслуживается она Министерством обороны США, также известна у военных под кодовым названием NAVSTAR (Navigation Satellite Timing and Ranging).

Проект запущен в 1978 г. Первая штатная орбитальная группировка системы разворачивалась с июня 1989 г. по март 1994 г.: на орбиту были выведены 24 космических аппарата типа "Block II". Окончательный ввод GPS в эксплуатацию состоялся в 1995 г.

Следует отметить, что система GPS не была первой. Она пришла на смену устаревшей к тому времени системе "Tranzit" (начало разработки - 1964, запуск в работу - 1967). В ней местонахождение подвижного объекта устанавливалось по доплеровскому сдвигу частоты. В общих чертах, смысл этого метода можно описать следующим образом. Одно наблюдение спутника позволяет написать уравнение одной линии положения, имеющей форму либо гиперболы (доплеровский дифференциальный метод) либо более сложной кривой изодопы (доплеровский интегральный метод). При n наблюдениях положение наблюдателя получается в одной из точек пересечения n соответствующих гипербол или изодоп. Погрешность определения координат в этом случае составляла от 50 до 500м. Причём, чем больше была скорость наземного объекта, тем менее точными становились данные. Не стоит забывать и существовавшую в СССР систему "Цикада", которая фактически была аналогом "Tranzit". В 1963 году в СССР начались работы по построению этой системы. В 1967 году на орбиту был выведен первый отечественный навигационный спутник “Космос-192”.

Характерной чертой радионавигационных спутниковых систем первого поколения является применение низкоорбитальных спутников и использование для измерения навигационных параметров объекта сигнала одного, видимого в данный момент спутника. По этим измерениям вычисляются параметры движения спутника относительно наземного пункта наблюдения. Решение обратной задачи — дело времени. В старых навигационных системах был невозможен непрерывный режим работы. Ввиду того, что системы низкоорбитны, время, в течение которого спутник находится в поле видимости, не превышает одного часа. Кроме того, время между прохождением различных спутников зоны видимости потребителя зависит от географической широты, на которой он находился, и может составить величину от 35 до 90 минут. Уменьшение этого интервала путём наращивания числа спутников невозможно, потому что все спутники излучали сигналы на одной и той же частоте. Гораздо более гибкой и эффективной была следующая система позиционирования - GPS.

Система GPS в целом состоит из трех сегментов - космического, управляющего и пользовательского.

Космический сегмент состоит из сети 24 спутников, находящихся примерно на 12-часовых орбитах, на борту каждого из которых имеются атомные часы. Орбитальный радиус спутников - приблизительно равен четырем Земным радиусам (26 600 км). Орбиты почти круговые, с типичным эксцентриситетом, меньшим чем 1%. Наклон орбиты к экватору Земли - обычно 55 градусов. Спутники имеют орбитальные скорости около 3,9 км/с в системе координат с началом в центре Земли и не вращающейся относительно отдаленных звезд. Расчетные орбиты спутников лежат в шести равноотстоящих плоскостях. В каждой плоскости находится по четыре спутника, а угловое расстояние между спутниками в каждой плоскости равно примерно 90 градусам. Орбитальные периоды спутников приблизительно равны 11 часам и 58 минутам так, что проекция траектории спутника на поверхность Земли повторяется день за днем, потому что Земля делает один оборот относительно звезд каждые 23 часа и 56 минут. Четыре дополнительных минуты требуются, чтобы точка на Земле возвратилась в положение непосредственно под Солнцем, потому что Солнце перемещается приблизительно на один градус в день относительно звезд.

На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - для целей резервирования), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер.

Структура сигналов L1 и L2.

Передающая аппаратура спутника излучает синусоидальные сигналы на двух несущих частотах: L1=1575,42 МГц и L2=1227,6 МГц. Перед этим сигналы модулируются так называемыми псевдослучайными цифровыми последовательностями. Эта процедура называется фазовой манипуляцией. Причём частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2- только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени.

Срок службы каждого спутника составляет около 10 лет, их заменяют по мере выхода из строя.

Управляющий сегмент содержит главную станцию управления - авиабаза Фалькон в штате Колорадо, пять станций слежения, расположенных на американских военных базах на Гавайских островах, островах Вознесения, Диего-Гарсия, Кваджелейн и Колорадо-Спрингс и три станции закладки: острова Вознесения, Диего-Гарсия, Кваджелейн. Кроме того, имеется сеть государственных и частных станций слежения за ИСЗ, которые выполняют наблюдения для уточнения параметров атмосферы и траекторий движения спутников. Собираемая информация обрабатывается в суперкомпьютерах и периодически передается на спутники для корректировки орбит и обновления навигационного сообщения.

Пользовательским сегментом являются все, кто пользуются данными, посылаемыми спутниками. Если раньше пользователями в основном являлись военные и некоторые правительственные и научные учреждения, то на в настоящее время, за счёт доступности этой технологии, количество пользователей стремительно растёт. Путешествия, транспорт, слежение за животными и даже детьми, охранные системы - вот далеко не полный перечень применений системы GPS. Приёмники сигналов GPS представляют собой специализированный компьютер. По анализу сигналов, поступающих со спутников, он рассчитывает своё текущее местоположение. Если это положение меняется, то становится возможным расчёт дополнительных параметров - скорость, направление, время прибытия к целевому пункту назначения и т.п. Для отслеживания спутников нужно быть под открытым небом - под крышей или в тесном окружении высотных домов сигналы от спутников частично или полностью гасятся препятствиями. Облачность и осадки влияния на качество сигнала практически не оказывает, стекло и пластик - тоже не помеха.

Помимо системы GPS сегодня существует её российский аналог. Называется он ГЛОНАСС, что означает Глобальная навигационная спутниковая система. Она стала разрабатываться в СССР также, как и GPS, в середине 70-х гг. и в 1993 г. была официально принята в эксплуатацию МО РФ. Американская GPS и отечественная ГЛОНАСС концептуально аналогичны и отличаются некоторыми аспектами технической реализации. Но, в отличии от американской, система ГЛОНАСС предназначена пока только для военного применения. Кроме того, из запланированных 24 спутников, их реальное количество составляет всего 10. Таким образом практического интереса для нас с Вами эта система в настоящее время не представляет.

Гораздо более интересно скорое появление другой навигационной спутниковой системы. Её название - Galileo. Эта система создаётся в тесном сотрудничестве множества европейских стран. Интерес к ней проявляют и страны Азии. Ориентировочной датой реализации этой программы является 2008 год. Эта навигационная система так же, как и GPS, ориентирована на общий доступ различных потребителей. Пока ведутся подготовительные работы и научно-технологические исследования.

Созвездие Galileo будет состоять из 27 спутников в трех орбитальных плоскостях, каждая с 9 спутниками, равномерно распределенными в пределах круговой орбиты. Ключевые параметры - орбитальный радиус 29994 километров и склонение 56 градусов. Чтобы обеспечивать необходимую избыточность на орбите и позволить быстрое восстановление в случае отказа спутников, предполагаются три активных резервных спутника, по одному в каждой орбитальной плоскости. Кроме этого будут применены новые частотные диапазоны, сигналы и методы обработки данных, что, как предполагается, значительно повысит точность определения положения по сравнению с системой GPS. Однако существующие приёмники не смогут воспринимать данные, передаваемые навигационной системой Galileo.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: