Тема 3. Общая миология

Кость как орган. Кость «os, ossis» как орган снаружи, кроме сочленовых поверхностей, покрыта надкостницей (periosteum), представляющей собой тонкую и прочную соединительнотканную пластинку, богатую кровеносными и лимфатическими сосудами, нервами. Она прочно сращена с костью при помощи прободающих волокон, проникающих вглубь кости. Наружный слой надкостницы - волокнистый, внутренний - остеогенный (костеобразующий), прилежащий к кости, за счет которого происходит развитие, рост в толщину и регенерация костей после повреждения.

Различают два типа костной ткани - ретикулофиброзную (грубоволокнистую) и пластинчатую. Первая характерна для покровных костей черепа. В ней одновременно с образованием остеоцитов образуется межклеточное вещество и коллагеновые волокна, а между ними основное вещество уплотняется и формирует костные балки (перекладины). Вторая, пластинчатая ткань образуется из первой при врастании к кость сосудов и представлена костными пластинками толщиной от 4 до 15мкм, которые состоят из остеоцитов и межклеточного тонковолокнистого костного вещества.

В зависимости от расположения костных пластинок различают компактное (плотное), substantia compacta и губчатое (substantia spongiosa) костное вещество (трабекулярная кость). В компактном веществе костные пластинки расположены в определенном порядке. Образуя сложные образования - остеоны - структурные единицы кости. Остеон состоит из 5 - 20 цилиндрических пластинок, вставленных одна в другую. В ценре остеона - центральный канал (Гаверсов). Между остеонами располагаются вставочные, промежуточные (интерстициальные) пластинки, кнаружи от них находятся наружные окружающие (генеральные) пластинки, кнутри - внутренние окружающие (генеральные) пластинки.

Губчатое костное вещество состоит из весьма тонких костных пластинок и перекладин, перекрещивающихся между собой и образующих ячейки, заполненные костным мозгом. Перекладины губчатого вещества расположены в определенном порядке. Их направление соответствует действию на кость сил сжатия и растяжения. Трубчатое и арочное строение кости обуславливает наибольшую прочность при меньшей массе и минимальной затрате костного материала (П. A. Лесгафт), что объясняет взаимообусловленность и взаимосвязь формы и выполняемой костью функции. Этот факт положен в основу международной классификации костей (табл.1)

Таблица 1

Международная классификация костей

Вид кости Характеристика (части кости)
Длинная (трубчатая) кость, os longum Тело (диафиз), метафиз, эпифиз, апофизы (отростки, выступы-бугры)
Короткая (губчатая) кость, os breve -
Плоская кость, os planum Края, углы
Ненормальная (смешанная) кость, os irregulare Отдельные части имеют различный вид остеогенеза
Воздухоносная кость, os pneumaticum Воздухоносная полость

Наиболее приемлемой считается классификация костей М. Г. Привеса с учетом: формы (строения), функции и развития (табл. 2).

В трубчатой кости различают среднюю часть кости в виде трубки с костномозговой полостью (компактное вещество), называемое телом (диафизом) кости, которое в проксимальном и дистальном направлениях переходит в губчатое вещество называемое проксимальным и дистальными эпифизами.

Концевые отделы кости, имеющие суставные поверхности называются эпифизами (проксимальным и дистальным). Истинный эпифиз построен из губчатого вещества и имеет энхондральный очаг (ядро) окостенения - ложный эпифиз его не имеет. Между диафизом и эпифизом до половозрелого возраста располагается зона роста кости в длину - метафизарный (метаэпифизарный) хрящ. Расположенные на эпифизах выступы, в виде отростков, бугров, называются апофизами, и, в отличие от эпифизов, суставной поверхности не имеют.

Таблица 2

Классификация костей по М. Г. Привесу

I. Трубчатые 1.Длинные 2.Короткие
II.Губчатые 1.Длинные 2.Короткие 3.Сесамовидные
III.Плоские 1.Кости черепа 2.Кости поясов
IV.Смешанные  

Губчатые кости состоят из губчатого вещества, покрытого тонким слоем компактного. К ним относятся также кости развивающиеся в толще сухожилий, - сесамовидные (например, гороховидная, надколенник).

Плоские кости состоят из двух пластинок компактного вещества, между которыми находится слой губчатого вещества. Плоские кости черепа развиваются на основе соединительной ткани (покровные кости) и губчатое вещество между внутренней и наружной компактными пластинками называется двойным, diploe. Плоские кости поясов развиваются на основе хрящевой ткани.

Смешанные кости - это кости, части которых сливаются при развитии из частей, имеющих разные функцию, строение и развитие.

Во внутриутробном периоде у новорожденных во всех полостях костей располагается красный костный мозг, выполняющий кроветворную и защитную функции. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества губчатых, плоских костей и в метафизах, эпифизах и апофизах трубчатых костей.

Краткий очерк развития скелета. У низших хордовых животных (ланцетник) впервые появля­ется спинная струна - хорда - зачаток внутреннего скелета, ко­торая сохраняется в течение всей жизни организма. Вокруг хорды из мезодермы формируется перепончатый скелет. Впоследствии в процессе эволюции соединительно-тканный перепончатый скелет замещается хрящевым (хрящевые рыбы, у которых хрящевые по­звонки окружают хорду), а начиная с костистых рыб и далее, включая млекопитающих, костным скелетом. Соответственно это­му в онтогенезе большинство костей человека последовательно сменяют друг друга три стадии: перепончатая, хрящевая и кост­ная - вторичные кости. Минуют хрящевую стадию покровные кости - первичные кости (кости свода черепа, лица, часть ключицы). У человека также закладывается хорда, однако она редуцируется еще во внутриутробном периоде. Сохраняются лишь фрагменты хорды - студенистое ядро меж­позвонковых дисков.

Костная ткань появляется на 6-8-й неделе внутриутробной жизни человека. При развитии покровных костей в том участке соединительной ткани, где возникнет будущая кость, появляется одна или несколько точек окостенения (эндесмальное окостенение), образованных балками молодых костных клеток - остеобластов, которые интенсивно размножаются, в результате чего костные балки разрастаются в разные стороны. В петлях костной сети рас­положены кровеносные сосуды.

В своем развитии кости конечностей проходят стадии: перепончатую или соединительно-тканную, хрящевую, костную. Во внутреннем слое, покрывающей хрящ надхрящницы, примерно на середине диафиза, появляются остеобласты, образующие ци­линдрическую костную манжетку (перихондральное окостене­ние). Постепенно надхрящница превращается в надкостницу, обра­зующую новые остеобласты. Таким образом строится костная пластинка на поверхности хряща. Костные клетки располагаются преимущественно вокруг кровеносных сосудов. Рост кости в тол­щину за счет надкостницы называется периостальным способом образования костной ткани (периосталъное окостенение). Вместе с тем происходит и эндохондралъное окостенение. При этом кост­ная ткань образуется внутри хряща. Из надкостницы в хрящ вра­стают кровеносные сосуды и соединительная ткань, хрящ начи­нает разрушаться. Часть клеток соединительной ткани превраща­ется в остеобласты, которые разрастаются в виде тяжей, форми­рующих в глубине хряща губчатое костное вещество. Диафизы окостеневают еще во внутриутробном периоде (первичные точки окостенения). В течение его последнего месяца и после рождения в хрящевых эпифизах появляются 1-3 вторичных точки окосте­нения, которые увеличиваются в размерах, хрящ изнутри разру­шается, а на его месте, как это было описано выше, эндохондрально образуется костная ткань. Позже происходит и периостальное окостенение эпифизов, а хрящ сохраняется в виде тонкой пластин­ки лишь в области будущей суставной поверхности кости - сус­тавной хрящ, и хрящевой прослойки между эпифизом и диафизом диафиза - метафизарный хрящ, за счет которого трубчатая кость рас­тет в длину до 16-24 лет, когда метафизарный хрящ полностью заменяется костной тканью: эпифиз срастается с диафизом. Губ­чатые кости окостеневают аналогично эпифизам. В них наряду с основными (первичными, вторичными) возникают добавочные точки окостенения, которые постепенно сливаются с основными. В толще диафиза трубчатых костей эндохондрально образовав­шаяся костная ткань рассасывается, в результате чего возникает костно-мозговая полость. В нее прорастают клетки эмбриональной соединительной ткани, из них развивается красный костный мозг.

В течение индивидуальной жизни человека костная система претерпевает значительные возрастные изменения. Так, у ново­рожденного имеется большое количество хрящевой ткани. В течение первого года жизни кости растут медленно, от 1 до 7 лет рост ускоряется. После 11 лет вновь начинается активный рост, форми­руются отростки, костномозговые полости приобретают оконча­тельную форму. По мере старения наблюдается разрежение кости и уменьшение числа костных пластинок, обызвествление хрящей, деформация суставных головок.

Мышцы тела необходимо рассматривать с точки зрения их развития и функции, а также топографии систем и групп, в которые они складываются.

Развитие мышц. Мышцы туловища развиваются из дорсальной части мезодермы, залегающей по бокам хорды и нервной трубки. Мезодерма разделяется на первичные сегменты, или сомиты. После выделения склеротома, идущего на образование позвоночного столба, оставшаяся дорсомедиальная часть сомита образует миотом, клетки которого (миобласты) вытягиваются в продольном направлении, сливаются друг с другом и превращаются в дальнейшем в симпласты мышечных волокон. Часть миобластов дифференцируется в особые клетки — миосателлиты, лежащие рядом с симпластами. Миотомы разрастаются в вентральном направлении и разделяются на дорсальную и вентральную части. Из дорсальной части миотомов возникает спинная (дорсальная) мускулатура туловища, а из вентральной — мускулатура, расположенная на передней и боковой сторонах туловища и называемая вентральной. В каждый миотом (миомер) врастают ветви соименного спинномозгового нерва (невромера). Соответственно делению миотома на 2 части от нерва отходят 2 ветви, из которых дорсальная (задняя) входит в дорсальную часть миотома, а вентральная (передняя) - в вентральную. Все происходящие из одного и того же миотома мышцы снабжаются одним и тем же спинномозговым нервом. Соседние миотомы могут срастаться между собой, но каждый из сросшихся миотомов удерживает относящийся к нему нерв. Поэтому мышцы, происходящие из нескольких миотомов (например, прямая мышца живота), иннервируются несколькими нервами. Первоначально миотомы на каждой стороне отделяются друг от друга поперечными соединительнотканными перегородками, myosepta.

Такое сегментированное расположение мускулатуры туловища у низших животных остается на всю жизнь. У высших же позвоночных и у человека благодаря более значительной дифференцировке мышечных масс сегментация значительно сглаживается, хотя следы ее и остаются как в дорсальной (короткие мышцы, перекидывающиеся между позвонками), так и в вентральной мускулатуре (межреберные мышцы и прямая мышца живота). Часть мышц, развившихся на туловище, остается на месте, образуя местную, аутохтонную, мускулатуру (autos — сам, само-; chthon — земля, родина). Другая часть в процессе развития перемещается с туловища на конечности. Такие мышцы называются трункофугальными (лат. truncus — ствол, туловище; fugo — обращаю в бегство). Наконец, третья часть мышц, возникнув на конечностях, перемещается на туловище. Это трункопетальпые мышцы (лат. peto — стремлюсь). На основании иннервации всегда можно отличить аутохтонную (т. е. развивающуюся в данном месте) мускулатуру от сместившихся в эту область других мышц-пришельцев.

Мускулатура конечностей образуется из мезенхимы почек конечностей и иннервируется из передних ветвей спинномозговых нервов при посредстве плечевого и пояснично-крестцового сплетений. У низших рыб из миотомов туловища вырастают мышечные почки, которые разделяются на два слоя, расположенных с дорсальной и вентральной сторон скелета плавника. Подобным же образом у наземных позвоночных мышцы по отношению к зачатку скелета конечности первоначально располагаются дорсально и вентрально (разгибатели и сгибатели).

При дальнейшей дифференцировке зачатки мышц передней конечности разрастаются в проксимальном направлении (трункопетальные мышцы) и покрывают аутохтонную мускулатуру туловища со стороны груди и спины (mm. pectorales major et minor, m. latissimus dorsi). Кроме этой первичной мускулатуры передней конечности, к поясу верхней конечности присоединяются еще трункофугальные мышцы, т. е. производные вентральной мускулатуры, служащие для передвижения и фиксации пояса и переместившиеся на него с головы (mm. trapezius и sternocleidomastoideus) и с туловища (mm. rhomboideus, levator scapulae, serratus anterior, subclavius, omohyoideus). У пояса задней конечности вторичные мышцы не развиваются, так как он неподвижно связан с позвоночным столбом. Сложная дифференцировка мышц конечностей наземных позвоночных, в особенности у высших форм, объясняется функцией конечностей, превратившихся в сложные рычаги, выполняющие различного рода движения.

Мышцы головы возникают отчасти из головных сомитов, а главным образом — из мезодермы жаберных дуг. Висцеральный аппарат у низших рыб состоит из сплошного мышечного слоя (общий сжиматель), который делится по своей иннервации на отдельные участки, совпадающие с метамерным расположением жаберных дуг: I жаберной (мандибулярной) дуге соответствует V пара черепных нервов (тройничный нерв), II жаберной (гиоидной) дуге — VII пара (лицевой нерв), III жаберной дуге — IX пара (языкоглоточный нерв). Остальная часть общего сжимателя снабжается ветвями X пары (блуждающий нерв). Позади общего сжимателя обособляется пучок, прикрепляющийся к поясу верхней конечности (трапециевидная мышца). Когда с переходом из воды на сушу у низших позвоночных прекратилось жаберное дыхание, приспособленное для жизни в воде, мышцы жаберного аппарата (висцеральные) распространились на череп, где превратились в жевательные и мимические мышцы, но сохранили связь с теми частями скелета, которые возникли из жаберных дуг. Поэтому жевательные мышцы, возникающие из челюстной дуги, и мышцы дна рта располагаются и прикрепляются на нижней челюсти и иннервируются тройничным нервом (V пара). Из мускулатуры, соответствующей II жаберной дуге, происходит главным образом подкожная мускулатура шеи и головы, иннервируемая лицевым нервом (VII пара).

Мышцы, возникающие из материала двух жаберных дуг, имеют двойное прикрепление и двойную иннервацию, например двубрюшная мышца, переднее брюшко которой прикрепляется к нижней челюсти (иннервация из тройничного нерва), а заднее — к подъязычной кости (иннервация из лицевого нерва). Висцеральная мускулатура, иннервируемая IX и X парами черепных нервов, у наземных позвоночных частью редуцируется, частью идет на образование мышц глотки и гортани. Трапециевидная мышца теряет всякую связь с жаберными дугами и становится исключительно мышцей пояса верхней конечности. У млекопитающих от нее отщепляется в виде отдельной части грудиноключично-сосцевидная мышца. Задняя ветвь блуждающего нерва, иннервирующая трапециевидную мышцу, превращается у высших позвоночных в самостоятельный черепной нерв — добавочный, n. accessorius. Так как мозговой череп во всех своих частях является неподвижным образованием, то на нем ожидать развития мышц нельзя. Поэтому на голове встречаются только некоторые остатки мускулатуры, образовавшейся из головных сомитов. К числу их нужно отнести мышцы глаза, происходящие из так называемых предушных миотомов (иннервация от III, IV и VI пар черепных нервов).

Затылочные миотомы вместе с передними туловищными миотомами обычно образуют путем вентральных отростков особую поджаберную или подъязычную мускулатуру, лежащую под висцеральным скелетом. Из этой мускулатуры, проникающей кпереди до нижней челюсти, происходят у наземных позвоночных мышцы языка, снабжаемые в силу своего происхождения из затылочных сомитов комплексом нервных волокон, образующих подъязычный нерв, который только у высших позвоночных стал настоящим черепным нервом.

Остальная часть подъязычной мускулатуры (ниже подъязычной кости) представляет собой продолжение вентральной мускулатуры туловища, иннервируемой от передних ветвей спинномозговых нервов. Таким образом, для понимания расположения и фиксации мышц надо учитывать, кроме их функции, также и развитие.

Мышца как орган. Мышца, musсuIus, состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка, и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой — perimysium, составляя мышечное брюшко. Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

Сокращение мышцы вызывается импульсом, идущим от центральной нервной системы, и каждая мышца связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по И. П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемом тонусом.

В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы. В эти ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть — брюшко — и пассивную часть, при помощи которой она прикрепляется к костям,— сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы. Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мышцы как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свои определенные, присущие только ему форму, строение, функцию, развитие и положение в организме.

Работа мышц (элементы биомеханики). Основным свойством мышечной ткани, на котором основана работа мышц, является сократимость.

При сокращении мышцы происходят укорочение ее и сближение двух точек, к которым она прикреплена. Из этих двух точек подвижный пункт прикрепления, punctum mobile, притягивается к неподвижному, punctum fixum, в результате происходит движение данной части тела.

Действуя таким образом, мышца производит тягу с определенной силой и, передвигая груз (например, кость), совершает определенную механическую работу. Сила мышцы зависит от количества входящих в ее состав мышечных волокон и от площади так называемого физиологического поперечника, т. е. площади разреза в том месте, через которое проходят все волокна мышцы. Величина сокращения зависит от длины мышцы. Кости, движущиеся в суставах под влиянием мышц, образуют в механическом смысле рычаги, т.е. как бы простейшие машины для передвижения тяжестей. Чем дальше от места опоры будут прикрепляться мышцы, тем выгоднее, ибо благодаря увеличению плеча рычага лучше может быть использована их сила. С этой точки зрения, по П.Ф. Лесгафту, различают мышцы сильные, прикрепляющиеся вдали от точки опоры, и ловкие, прикрепляющиеся вблизи нее. Каждая мышца имеет начало, origo, и прикрепление, insertio.

Поскольку опорой для всего тела служит позвоночный столб, расположенный по средней линии тела, постольку начало мышцы, совпадающее обычно с неподвижной точкой, расположено ближе к средней плоскости, а на конечностях — ближе к туловищу, проксимально; прикрепление мышцы, совпадающее с подвижной точкой, находится дальше от середины, а на конечностях — дальше от туловища, дистально. Punctum fixum и punctum mobile могут меняться местами в случае укрепления подвижной точки и освобождения фиксированной. Например, при стоянии подвижной точкой прямой мышцы живота будет ее верхний конец (сгибание верхней части туловища), а при висе тела с помощью рук на перекладине — нижний конец (сгибание нижней части туловища).

Так как движение совершается в двух противоположных направлениях (сгибание — разгибание, приведение — отведение и др.), то для движения вокруг какой-либо одной оси необходимо не менее двух мышц, располагающихся на противоположных сторонах. Такие мышцы, действующие во взаимно противоположных направлениях, называются антагонистами. При каждом сгибании действует не только сгибатель, но обязательно и разгибатель, который постепенно уступает сгибателю и удерживает его от чрезмерного сокращения. Поэтому антагонизм мышц обеспечивает плавность и соразмерность движений. Каждое движение, таким образом, есть результат действия антагонистов.

В отличие от антагонистов мышцы, равнодействующая которых (т. е. прямая, соединяющая центр места начала мышцы с центром места прикрепления ее) проходит в одном направлении, называются синергистами. В зависимости от характера движения и функциональной комбинации мышц, участвующих в нем, одни и те же мышцы могут выступать то как синергисты, то как антагонисты.

Кроме элементарной функции мышц, определяемой анатомическим отношением их к оси вращения данного сустава, необходимо учитывать изменения функционального состояния мышц, наблюдаемые в живом организме и связанные с сохранением положения тела и его отдельных частей и постоянно меняющейся статической и динамической нагрузкой на аппарат движения. Поэтому одна и та же мышца в зависимости от положения тела или его части, при котором она действует, а также фазы соответствующего двигательного акта часто меняет свою функцию. Например, трапециевидная мышца по-разному участвует своими верхней и нижней частями при подъеме руки выше горизонтального положения. Так, при отведении руки обе названные части трапециевидной мышцы одинаково активно участвуют в этом движении, затем (после подъема выше 120°) активность нижней части названной мышцы прекращается, а верхней — продолжается до вертикального положения руки. При сгибании руки, т. е. при поднятии ее вперед, нижняя часть трапециевидной мышцы малоактивна, а после подъема плеча выше 120°, наоборот, в ней обнаруживается значительная активность. Такие более глубокие и точные данные о функциональном состоянии отдельных мышц живого организма получают с помощью метода электромиографии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: