Релятивистская квантовая физика

В 1927 г. английский физик Поль Дирак, рассматривая уравнение Шрёдингера, обратил внимание на его нереляти­вистский характер. При этом квантовая механика описывает объекты микромира, и хотя к 1927 г. их было известно только три: электрон, протон и фотон (даже нейтрон был экспериментально обнаружен только в 1932 г.), было ясно, что движутся они со скоростями, весьма близкими к скоро­сти света или равными ей, и более адекватное описание их поведения требует применения специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механи­ки, и теории относительности Эйнштейна, и получил фор­мулу для энергии электрона, которой удовлетворяли два ре­шения: одно решение давало известный электрон с положи­тельной энергией, другое - неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и соответствующих им античастицах, о мирах и антимирах. К этому же времени была разработана кванто­вая электродинамика. Суть ее состоит в том, что поле более не рассматривается как континуалисткая непрерывная сре­да. Дирак применил к теории электромагнитного поля правила квантования, в результате чего получил дискретные значения поля. Обнаружение античастиц углубило представ­ление о поле. Считалось, что электромагнитного поля нет, если нет квантов этого поля — фотонов. Следовательно, в этой области пространства должна быть пустота. Ведь спе­циальная теория относительности «изгнала» из теории эфир, можно сказать, что победила точка зрения о вакууме, о пу­стоте. Но пуст ли вакуум, — вот вопрос, который вновь воз­ник в связи с открытием Дирака. Сейчас хорошо известны эффекты, доказывающие, что вакуум пуст только в сред­нем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Даже если мы меряем заряд электрона, то, как оказалось, голый заряд электрона равнялся бы бесконечности. Мы же измеряем за­ряд электрона в «шубе» окружающих его виртуальных час­тиц.

Собственно представление о вакууме как непрерывной активности содержащихся в нем виртуальных частиц со­держится в принципе неопределенности Гейзенберга. Прин­цип неопределенности Гейзенберга имеет, кроме приведен­ного выше, еще и такое выражение: ∆E ∙ ∆t ≥ h. Согласно этому, квантовые эффекты могут на время нарушать закон сохранения энергии. В течение короткого времени At энер­гия, взятая как бы «взаймы», может расходоваться на рож­дение короткоживущих частиц, исчезающих при возвраще­нии «займа» энергии. Это и есть виртуальные частицы. Воз­никая из «ничего», они снова возвращаются в «ничто». Так что вакуум в физике оказывается не пустым, а представля­ет собой море виртуальных частиц.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: