Сведения об инструментальных материалах. Требования, предъявляемые к ним

В конце прошлого. и в начале на­шего столетия процессы снятия струж­ки в металлообрабатывающей про­мышленности были на очень низком уровне развития.. Главным инструмен­тальным материалом была углероди­стая сталь, обладающая низкой износостойкостью и недостаточной способ­ностью противостоять тепловым на­грузкам. В процессе резания режущая кромка инструмента, изготовленная из инструментальной стали с содержани­ем углерода 1,2 % и закаленная до твердости 66 HRC, могла противо­стоять температурам 200—250 °С и до­пускать обработку со скоростями ре­зания 10—15 м/мин.

Несколько позднее появились ин­струментальные стали, легированные присадками хрома, вольфрама, мо­либдена, ванадия и др., которые поз­волили работать со скоростями 20— 25 м/мин. Резцы из углеродистых и ле­гированных сталей изготовляются цельными, из одного куска металла.

В первые два десятилетия двадца­того столетия была открыта быстроре­жущая сталь (1906), которая при со­держании в ней вольфрама около 19 % могла работать при температу­ре до 650 °С. Быстрорежущие стали допускают работу при скоростях реза­ния, в 2—3 раза превышающих ско­рости, возможные при использовании инструментов, изготовленных из инст­рументальных углеродистых сталей.

Дальнейшие эксперименты с мате­риалами, имеющими повышенное со­держание кобальта (Со), хрома (Сг) и вольфрама (W), привели к получе­нию сплава из этих металлов — стел­лита (1915) с температурным преде­лом 800 °С.

Эти два новых материала явились большим достижением в области об­работки резанием. Для обточки сталь­ного валика диаметром 100 мм и дли­ной 500 мм резцом из инструментальной стали требовалось 100 мин ма­шинного времени. Быстрорежущая сталь позволила сократить это время До 26 мин, а резцы из стеллита дове­ли его до 15 мин.

В 1920 г. впервые был получен металлокерамический твердый сплав. Этому открытию суждено было сыг­рать самую важную роль в развитии режущего инструмента. В 30-е годы металлокерамические твердые сплавы нашли широкое применение в металло­обработке. Уже первые инструменты из твердых сплавов позволили умень­шить время обработки образцового валика до 6 мин. Сейчас этот инструментальный материал занимает доми­нирующее положение в области реза­ния металлов.

Твердые сплавы сохраняют отно­сительно высокую твердость при на­греве до температуры 800—900 °С и позволяют вести обработку на высо­ких скоростях резания. При соответ­ствующих геометрических параметрах инструмента скорость резания дости­гает 500 м/мин при обработке сталей марки 45 и 2700 м/мин при обработке алюминия. Твердосплавным инстру­ментом можно обрабатывать детали из закаленной (HRC до 67) и труднообрабатываемых сталей.

Твердые сплавы выпускаются в ви­де пластинок, стандартизованных по форме и размерам, и сплошных или пустотелых столбиков. Важным собы­тием в инструментальной промыш­ленности было создание на основе принципа «неперетачиваемости» в се­редине 50-х годов инструментов с поворотными неперетачиваемыми пла­стинками.

При износе одной режущей кромки пластинка не снимается на переточку, а поворачивается, и новая режущая кромка продолжает резание. В 50-е годы появился минералокерамический материал. Его производство очень схо­же с процессом изготовления металлокерамических твердых сплавов. Осно­вой минералокерамических материа­лов является очень часто корунд (окись алюминия Аl2О3). Минералокерамика не нашла, однако, широкого применения. Главной причиной тому является недостаточная прочность.

В 1969—1973 гг. появились пово­ротные пластинки с покрытием, сущ­ность которого заключается в том, что на прочную твердосплавную основу наносится слой износостойкого карби­да. Первые твердосплавные пластин­ки имели слой карбида титана тол­щиной 4—5 мкм. Применение покры­тия увеличило срок службы пластинок примерно на 300 %. Столь сущест­венное улучшение объясняется тем, что наносимый слой действует как диффузионный барьер, имеющий вы­сокую химическую стабильность при повышенных температурах.

В 1976 г. были созданы пластинки с двухслойным покрытием (типа GG015) с использованием окиси алю­миния. Наружный слой толщиной в 1 мкм делается из окиси алюминия, а промежуточный слой толщиной и 6мкм — из карбида титана.

Твердосплавные пластинки с двух­слойным, покрытием этого типа обладают отличными режущими свойствами при высоких, средних и низких режимах резания при обработке стали, чугуна при температурах до 1300 °С.

Особое место среди инструмёнтальных материалов занимают алмазы, яв­ляющиеся самыми твердыми, самыми износостойкими материалами, но хрупкими и самыми дорогими из всех материалов.

В нашей стране на основе кубического нитрида бора (вещества, состоящего из атомов азота и бора) создан новый сверхтвердый; синтетический материал эльбор, обладающий большой твердостью (до 9000 кгс/мм2) и высокой теплостойкостью (1400 С). Эльбор химически инертен по отношению к углеродсодержащим материалам и более прочен, чем алмаз. Инструмент, изготовленный из эльбора, имеет высокую износостойкость. Эльбор в виде порошка используют для изготовления шлифовальных кругов и дру­гого абразивного инструмента, а эль­бор в виде столбиков — для изготовле­ния резцов.

На рис.19 развитие инструменталь­ных материалов изображено в форме

Рис. 19. Диаграмма развития инструментальных материалов

графика, на котором по оси абсцисс отложены годы, а по оси ординат — время, требовавшееся для обточки од­ного и того же валика в разные годы нынешнего столетия. Как видно из Графика, время обработки образцово­го валика сократилось со 100 мин в начале 1900-х г. до 1 мин в середине 1970.'х г.

Требования, предъявляемые к ин­струментальным материалам. Режущие материалы должны удовлетворять следующим основным требованиям:

высокой твердости, значительно превосходящей твердость обрабатываемого металла;

высокой механической прочности — режущая поверхность инструмента должна выдерживать большое давление, без хрупкого разрушения и заметного пластичного деформирования;

высокой теплостойкости — материал должен сохранять при нагре­ве твердость, достаточную для осуществления процесса резания;

высокой износоустойчиво­сти — способности материала работать продолжительное время при вы­сокой температуре.

Для изготовления инструмента применяют следующие группы материалов, в различной степени (в разных условиях) удовлетворяющие этим требованиям: 1) инструментальные углеродистые стали; 2) инструментальные легированные стали; 3) быстрорежу­щие стали; 4) металлокерамические твердые сплавы; 5) минералокерамические материалы; 6) алмазы; 7) аб­разивные материалы; 8) конструк­ционные стали.

В табл. 2 приведены свойства ос­новных инструментальных материалов, а на диаграмме (рис. 20) — твер­дость их в зависимости от температу­ры резания.

Инструментальные углеродистые стали. Для изготовления режущих ин­струментов применяются углеродистые стали марок: У7, У8,..., У13, У7А, У8А,..., У13А. Буква У указывает, что сталь углеродистая; цифры—среднее содержание в процентах углерода;

2. Свойства основных инструментальных материалов

Инструментальный материал материал Твердость, HRA Предел прочности на изгиб, Н/м 107 Предел прочности на сжатие Н/м 107 Теплопроводность, Вт/м*К Теплостойкость. град Коэффициент относительной допустимой скорости резания
Углеродистая сталь У10А-У12А       62,85   0,4
Быстрорежу­щая сталь Р18       20,95   1,0
Твердый сплав ВК-8 Т15К6       58,66 27.235   3,0 4,0
Минералокерамика ЦМ-332   30-40 150—180 20,95 1100-1200 5-7

Рис. 20. Зависимость твердости инструмен­тальных материалов от температуры

буква А показывает, что сталь повы­шенного качества с минимальным (не­большим) содержанием вредных при­месей. Марки и их состав даны в ГОСТ 1435—54.

Инструмент, изготовленный из уг­леродистой стали, позволяет вести об­работку при скоростях резания 10— 15 м/мин и при температурах резания 200—250°С.

Из углеродистых сталей изготовля­ют слесарные и режущие инструмен­ты, работающие на низких скоростях. Из стали У9А изготовляют зубила, из стали У13 — шаберы, напильники. Учитывая, что углеродистая сталь хо­рошо шлифуется, сталь У12А применя­ют для изготовления метчиков, необ­ходимых, для обработки точных резьб с мелким шагом.

Легированные инструментальные стали. Легированные инструменталь­ные стали отличаются от углеродистых наличием в них легирующих элемен­тов — хрома, вольфрама, молибдена, ванадия, марганца, кремния. Стали с такими добавками называются леги­рованными инструментальными сталя­ми. Легированные стали выдерживают температуру нагрева 250—300°С и дают возможность работать со скоростью резания 20—25 м/мин. Наибольшее распространение получили марки ХВ5, ХВГ, 9ХС, ХГ. Из стали ХВ5 изготовляются развертки и фасонные резцы. Из стали ХВГ изготовляются протяжки крупных размеров Сталь 9ХС отличается высокой карбидной однородностью. Из нее изготовляются инструменты с тонкими режущими элементами — сверла, раз вертки, метчики, плашки, концевые фрезы небольших диаметров. Химический состав легированных сталей группы и марки даны в ГОСТ 5950— 63.

Быстрорежущие стали. Быстрорежущие инструментальные стали отличаются от легированных большим со держанием в них вольфрама, ванадия хрома, молибдена. Быстрорежущие стали обладают более высокой твердостью, прочностью, износостойкость и теплостойкостью. Они не теряют своих режущих свойств при температур 550—600 °С и позволяют работать со скоростью резания в 2,5—3 раза выше, чем инструменты, изготовленные из углеродистых сталей, и в 1,5 раз, выше, чем инструменты, изготовленные из легированных сталей. Быстро режущие стали подразделяются н, стали нормальной производительности (Р18, Р9 и др.) и стали повышенной производительности (Р18Ф2К5, Р9Ф2К5 и др.). Наибольшее распространение получили стали Р9 и Р18. Твердость этих сталей — HRC 62—64 Быстрорежущие стали нормальной производительности позволяют работать со скоростью резания до 60 м/мин, а повышенной производительности — до 100 м/мин. Из быстрорежущих сталей изготовляются инструменты мно­гих наименований: резцы, сверла, зен­керы, развертки, цилиндрические фрезы, червячные фрезы, долбяки, протяжки и др.

Твердые сплавы. Для изготовления режущей части инструмента применя­ют металлокерамические твердые сплавы. Металлокерамические спла­вы получают спеканием порошков карбидов тугоплавких металлов: вольфрама, титана, тантала и связываю­щего их кобальта. Твердые сплавы об­ладают высокой теплостойкостью (до 1000°С) и износостойкостью. Они поз­воляют работать со скоростями реза­ния в 3—4 раза большими по сравне­нию с инструментами из быстрорежу­щей стали. Твердые сплавы выпуска­ются в виде пластинок определенной формы и стандартных размеров (ГОСТ 2209—69).

Область применения твердых сплавов указана в ГОСТ 3882—74. Из твердых сплавов изготовляются рез­цы различных типов, сверла, зенкеры, развертки, торцовые фрезы, червяч­ные фрезы, метчики и др.

Минералокерамические материалы. Для изготовления режущей части ин­струмента применяют минералокерамические материалы (микролит, терликорунд). Микролит, так же как и твердые сплавы, получают спеканием. Пластинки минеральной керамики об­ладают высокой твердостью (HRA=91—93), высокой теплостойкостью (до 1200 °С) и износостойкостью. Не­достатками керамических материалов являются хрупкость и пониженная прочность. Наиболее высокими режу­щими свойствами обладает материал марки ЦН-332.

Керамические материалы применя­ют главным образом при получистовом и чистовом точении и при чистовом и тонком фрезеровании торцовыми фре­зами с неперетачиваемыми пластин­ками.

Алмаз. Алмаз является самым твердым из всех инструментальных материалов. Твердость алмаза в 7 раз превосходит твердость карбида вольф­рама и в 3,5 раза — карбида титана. Алмаз обладает высокой теплопровод­ностью и высокой износостойкостью. Недостатками алмаза являются хруп­кость, низкая критическая температу­ра (700—750 °С) и дороговизна.

Алмазы бывают естественные и синтетические. В природе алмазы встречаются в виде кристаллов и сросшихся кристаллических зерен и кристалликов. Искусственные (синтетические) алмазы получают из обыч­ного графита воздействием на него вы­соких температур и давления. Синтетические алмазы типа «Карбонадо», «Баллас» выпускаются в виде кристал­лов и порошков. Шлифовальные круги из синтетических алмазов применяются для заточки и доводки твердосплав­ных режущих инструментов.

Алмазом оснащаются резцы, тор­цовые фрезы и перовые сверла. В ре­жущих инструментах применяются кристаллы массой от 931 до 0,75 кара­та (1 карат равен 0,2 г).

Кубический нитрид бора. Отечест­венная промышленность выпускает синтетические материалы того же на­значения, что и искусственные алмазы. К ним относится в первую очередь кубический нитрид бора. Он представ­ляет собой химическое соединение бо­ра и азота. Технология его изготовле­ния аналогична с производством син­тетических алмазов. Исходным мате­риалом является нитрид бора, свойст­ва которого сходны со свойствами гра­фита. Промышленные марки кубичес­кого нитрида бора «эльбор Р», «компо­зит», «кубинит» обладают высокой твердостью, высокой теплоемкостью и высокой износостойкостью.

Марки типа «эльбор Р» обладают свойствами, значительно превосходя­щими минеральную керамику и твер­дые сплавы. Резцы из эльбора приме­няют для тонкого чистового точения закаленных сталей (с твердостью HRC 45—60), хромоникелевых чугунов. Торцовые фрезы из эльбора поз­воляют производить чистовое фрезеро­вание закаленных сталей и получать шероховатость поверхности до Ra 1,25 мкм.

В последнее время освоено произ­водство крупных поликристаллических образований нитрида бора с диамет­ром 3—4 мм и длиной 5—6 мм, обла­дающих высокой прочностью. Осна­щение такими поликристаллами рез­цов и торцовых фрез позволяет обра­батывать закаленные стали с твер­достью HRC до 50 и высокопрочных чугунов с параметрами шероховато­сти до Ra 0,50 мкм.

Конструкционные стали. Для изго­товления державок, корпусов хвостови­ков и деталей для клеймения состав­ного инструмента применяют конструк­ционные стали: Ст5» Стб, стали 40, 45, 50 и др.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: