Блок управления П е р е д а т ч и к блок

Антенный

П р и е м н и к Ант

ЦАП
Демодулятор
Дек.К
Дек.Р


Рис. 2.1. Функциональная схема сотового радиотелефона.

· кодер речи - осуществляет кодирование речевого сигнала - преобразование по определенным законам с целью сокращения его избыточности, т.е. с целью сокращения объема информации, передаваемой по каналу;

· кодер канала - добавляет в цифровой сигнал дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передаче сигнала по линии связи; а также вводит в состав передаваемого сигнала информацию управления от логического блока;

· модулятор - осуществляет перенос кодированного сигнала на несущую частоту;

· демодулятор - выполняет функцию, обратную функции модулятора, - выделяет из модулированного сигнала кодированную цифровую последовательность;

· декодер канала - выделяет из входного цифрового потока служебную и дополнительную информацию, используя последнюю для обнаружения и исправления (по возможности) ошибок, внесенных в цифровой сигнал в процессе его передачи по радиоканалу;

· декодер речи - восстанавливает цифровой речевой сигнал;

· ЦАП - преобразует принятый цифровой речевой сигнал в аналоговую форму.

В приемопередающий блок входят также синтезатор частоты и микропроцессорный логический блок, управляющий работой терминала (входные каскады приемника и выходные каскады передатчика на схеме не показаны). Синтезатор частот является источником высокостабильных колебаний; он позволяет получить высокостабильную сетку частот, необходимых для реализации дуплексного режима работы АТ в используемом диапазоне.

Логический блок сотового радиотелефона состоит из цифрового сигнального процессора, памяти, канального эквалайзера, канального кодера/декодера, SIM -карты, преобразователей АЦП и ЦАП, наборного поля и дисплея. Цифровой логический блок выполняет все функции, связанные с цифровой обработкой сигнала (демодуляция, кодирование / декодирование канала, сжатие и восстановление речевого сигнала) и обработкой информации, вводимой с наборного поля клавиатуры. Она выводит необходимую информацию на экран дисплея, производит обмен информацией с SIM-картой - специальным съемным модулем идентификации абонента, обеспечивающим аутентификацию абонента и шифрование данных.

В качестве примера АТ на рис. 2.2 приведена упрощенная структурная схема сотового радиотелефона, работающего в стандарте GSM. Часто в таких радиотелефонах имеется аналоговая и цифровая части, которые выполняются на отдельных платах. Устройство приема – супергетеродинный приемник с двойным преобразованием частоты. Принимаемый сигнал с антенны поступает на керамический полосовой фильтр, выделяющий принимаемый сигнал fc и ослабляющий помехи. Отфильтрованный сигнал усиливается в малошумящем усилителе МШУ и подается на смеситель. На второй вход смесителя с синтезатора частот поступает первый сигнал гетеродина fпрм. Выходной сигнал смесителя первой промежуточной частоты fпр1 выделяется фильтром на поверхностных акустических волнах ПАВ, усиливается в усилителе промежуточной частоты УПЧ1 и поступает на второй смеситель. На второй вход этого смесителя подается сигнал гетеродина fг. Полученный в результате преобразования сигнал второй промежуточной частоты fпр2 (450 кГц) фильтруется фильтром на ПАВ и усиливается в УПЧ2 до необходимого уровня. Затем сигнал преобразуется в цифровую форму в АЦП и поступает в центральный процессор CPU, где последовательно осуществляются демодуляция, канальный эквалайзинг, канальное декодирование и декодирование речи. Восстановленный цифровой речевой сигнал преобразуется блоком ЦАП в аналоговую форму, усиливается и поступает на громкоговоритель (телефон).

Рис. 2.2. Упрощенная структурная схема сотового радиотелефона стандарта GSM

В передающей части АТ сигнал с выхода микрофона усиливается, преобразуется блоком АЦП в цифровую форму и поступает на центральный процессор CPU, где последовательно осуществляются кодирование речи, канальное кодирование и формирование информационных цифровых потоков I и Q. В фазовом модуляторе осуществляется манипуляция фазы квадратурных несущих, сформированных в I/Q – генераторе на частоте fфм, определяемой синтезатором частот. Фазоманипулированный сигнал подается на смеситель, где осуществляется его перенос на несущую частоту fс1 с помощью частоты fпрд, поступающей от синтезатора частот. После полосовой фильтрации сигнал усиливается в регулируемом усилителе мощности УМ и через полосовой фильтр поступает в антенну для излучения в пространство.

При передаче сообщений предусматривается адаптивная регулировка уровня мощности передатчика, обеспечивающая требуемое качество связи. Обработка сигналов управления, опрос клавиатуры, формирование необходимых частот и вывод информации на дисплей происходят под управлением центрального процессора CPU, который выполняет здесь роль логического блока.

В рамках стандарта GSM приняты пять классов АТ, различающихся уровнем выходной мощности радиопередатчика, - от модели 1-го класса с мощностью Рвых= 20 Вт, устанавливаемой на транспортном средстве, до портативной модели 5-го класса, характеризуемой Рвых= 0,6 Вт.

Фактически в описанном терминале абонента совмещены все функции станций спутниковой связи (АЦП/ЦАП, модуляция, демодуляция, кодирование, декодирование, усиление мощности и т.п.). Разработка двухрежимного АТ - для наземной и спутниковой систем связи - представляет собой сложную технологическую задачу. В отличие от систем наземной персональной связи, в СПСС информационный обмен обеспечивается преимущественно только с открытого пространства. Возможность связи из зданий (при расположении антенн на подоконнике и т.п.) ограничена. Персональная спутниковая связь в городских условиях затруднена из-за затенения городскими застройками, а следовательно, работа возможна только при больших углах возвышения спутника.

Теоретически терминалы радиотелефонной связи СПСС обеспечивают практически те же виды услуг, что и в наземных сетях, но в глобальном масштабе. Аналогично, как и в наземных сетях, предполагается использование многорежимных терминалов, ориентированных на работу в сотовых сетях разных стандартов. Таким образом, наметилась тенденция к интеграции наземных систем и систем персональной спутниковой связи.

Отдельную группу АТ составляют алфавитно-цифровые и цифровой пейджеры. Скорость передачи информации составляет обычно 2400 бит/с, однако АТ Globalstar в некоторых режимах способны обеспечивать до 9600 бит/с. Передаче информации предшествует процесс установления соединения, занимающий по времени от 2 до 30 с.

3. Речеобразование и характеристики речи

Один из распространенных способов описания речи заключается в представлении ее в виде сигнала, т.е. акустического колебания, или некоторой па­раметрической модели.

Под речевым сигналом (РС) понимают электрическое колебание, наблюдаемое на выходе формирующего устройства (акустоэлектрического преобразователя) при воздействии на его вход акустического речевого колебания. Сообщение, передаваемое с помощью РС, является дискретным, т.е. может быть представлено в виде последовательности символов из конечного их числа. Символы, из которых состоит РС, называются фонемами. Фонемой также называют наименьшую звуковую единицу данного языка, существующую в целом ряде конкретных звуков речи. Между буквами и фонемами одного и того же языка нет однозначной связи (буквы - это то, что мы читаем, фонемы - то, что произносим), поэтому число фонем и число букв неодинаково во всех языках. В каждом языке имеется присущее ему множество фонем, обычно от 30 до 50 (в русском языке насчитывается 42 звука речи - 6 гласных и 36 согласных).

Механизм речеобразования. Речь предназначена для общения. Речевое общение начинается с того, что в мозгу человека возникает в абстрактной форме некоторое сообщение. В процессе речеобразования это сообщение преобразуется в акустическое речевое колебание. Информация, содержащаяся в сообщении, представлена в акустическом колебании весьма сложным образом. Сообщение сначала преобразуется в последовательности нервных импульсов, управляющих артикуляционным аппаратом человека (рис. 3.1.). Под воздействием нервных им­пульсов артикуляционный аппарат приходит в движение, результатом которого является акустическое речевое колебание, несущее инфор­мацию об исходном сообщении. Знание механизма речеобразования играет важную роль для понимания методов обработки речи.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: