И волнам

1.3.1 Зависимость координаты Х от времени t имеет вид X=Asin (w 0 t+ a). Скорость и ускорение колеблющейся точки в момент времени t = 0 соответственно равны:

A) Asina; Acosa; B) Aw 0 cosa; - Aw 02 sina; C) Aw 02 sina; - Aw0 2 cosa; D) Aw 0 sina; - Aw 02 cosa; E) Asina; - Aw 02 cosa.

1.3.2 Зависимость координаты Х от времени t имеет вид:

А) х = А 1 cos wt + A 2 cos wt; B) x= Asin 2 w t; C) x= Atsinw t; D) x = Asin 3 wt;

Е) x = Acos 2 wt.

Какая из этих зависимостей описывает гармонические колебания?

1.3.3 Уравнение колебаний имеет вид: x = 5 cos (16 p t + 8). Период колебаний равен

А) Т =16 p с; В) Т =1/16 с; С) Т =1/8 c; D) Т =8 p с; Е) Т =10 p с.

1.3.4 Уравнение колебаний имеет вид: x= 5 cos (16 pt +8). Циклическая частота колебаний равна:

А) 16p с-1; В) 1/16 с-1; С) 8 c-1; D) 8p с-1; Е) 10p с-1.

1.3.5 Уравнение колебаний имеет вид: x =5 cos (16 pt +8). Линейная частота колебаний равна:

А) 16 p с-1; В) 1/16 с-1; С) 8 c-1; D) 8 p с-1; Е) 10 p с-1.

1.3.6 Максимальное значение силы, действующей на частицу массы m, совершающую гармонические колебания по закону Х = Аsin (ω 0 t+φ о) равно:

А) F=0,5mAω02; B) F=mAω02; C) F=mA2ω0; D) F= mA2ω02; E) F=mA20.

1.3.7 Материальная точка массой 5 г совершает гармонические колебания с частотой 0,5 Гц. Амплитуда колебаний 3 см. Максимальная сила, действующая на точку, равна:

А) 1,48 мН; В) 0,37 мН; С) 2,15 мН; D) 3,12 мН; Е) 7,13 мН.

1.3.8 Электрические колебания в колебательном контуре заданы уравнением q =10-2 cos 20 t. Чему равна амплитуда колебаний заряда?

А) 20 Кл; В) 20 t Кл; С) сos 20 t Кл; D) 10-2 Кл; Е) sin 20 t Кл.

1.3.9 Электрические колебания в колебательном контуре заданы уравнением

q =10-2 соs 20 t. Чему равна амплитуда колебаний тока?

А) 0,20 А; В) 20 t А; С) соs 20 t А; D) 10-2 А; Е) sin 20 t А.

1.3.10 Колебание точки описывается уравнением х = 2 + 3 sin (4 pt + p /3). Расстояние между двумя крайними положениями точки равно:

A) 4; B) 6; C) 8; D) 8 p; E) 2 p /3.

1.3.11 Уравнение колебаний заряда имеет вид: q = 5 cos (π t + π /3).

Модуль силы тока изменяется по закону:

A) 5 π sin (t + π /3); B) 5 π sin (π t + π /3); C) 5 cos (π + π /3 t);

D) (5/ t) cos (π + π /3 t); E) 5 π sin (π t).

1.3.12 Дифференциальное уравнение гармонических колебаний заряда q в колебательном контуре с ёмкостью С и индуктивностью L имеет вид:

A) ; B) ; C) ; D) ;

E) .

1.3.13 Тело, массой 16 кг закреплено на пружине с жесткостью k = 400 Н/м. Циклическая частота собственных колебаний равна:

А) 2,5 с-1; В) 5 с-1; С) 3,3 с-1; D) 1,1 с-1; Е) 1,9 с-1.

1.3.14 Грузик массой 1 кг, подвешенный на пружине жёсткостью k = 100 Н/м, совершает гармонические колебания по закону х = 0,4 cos (10 t + π /4) м. Максимальная потенциальная энергия пружинного маятника равна:

A) 20 Дж; В) 40 Дж; С) 16 Дж; D) 8 Дж; Е) 2000 Дж.

1.3.15 Грузик массой m = 0,625 кг, подвешенный на пружине, колеблется с периодом 1 с. Жесткость пружины k равна:

А) p; В) 1,5 p; С) 4 p 2; D) 3 p 2; Е) 2,5 p 2.

1.3.16 Потенциальная энергия пружинного маятника с коэффициентом упругости k равна:

А) kx /2; B) - kx; C) kx 2; D) kx 2/2; E) - kx /2.

1.3.17 Установите правильный ответ:

А) физический маятник это тяжёлая материальная точка, подвешенная на невесомой нерастяжимой нити;

В) физический маятник это твердое тело, способное совершать колебания относительно оси, не проходящей через центр тяжести;

С) период гармонических колебаний физического маятника зависит от массы маятника;

D) период гармонических колебаний физического маятника зависит от амплитуды колебаний;

Е) период гармонических колебаний физического маятника зависит от его длины.

1.3.18 Уравнение колебаний математического маятника задано в виде:

х = 0,l cos (3 t+p /4]. Амплитуда колебаний равна:

А) 0,1 м; В) 1,09 м; С) p/4 м; D) 3 м; Е) 1,09 м.

1.3.19 Тонкий обруч подвешен на гвоздь, вбитый горизонтально в стену. Обруч колеблется в плоскости, параллельной стене. Радиус обруча 40см. Период колебаний обруча равен:

А) 1,26 с; В) 2,22 с; С) 0,08 с; d) 0,44 с; Е) 1,77 с.

1.3.20 Диск, радиус которого 0,2 м, совершает колебания в вертикальной плоскости относительно оси, проходящей через край диска перпендикулярно его плоскости. Период колебаний диска равен:

А) 1,77 с; В) 1,26 с; С) 31,4 с; D) 1,1 с; Е) 0, 89 с.

1.3.21 Уравнение колебаний математического маятника задано в виде:

х = 0,2 cos (3 t + π /4). Его длина равна:

А) 0,2 м; В) 1,09 м; С) π/4 м; d) 3,27 м; Е) 88,2 м.

1.3.22 Математический маятник имел период колебаний Т 0. Его длину увеличили в n раз. Период колебаний стал равен:

А) 0; В) n 2 Т 0; С) Т 0; d) ; E) Т0 / n.

1.3.23 Колебания материальной точки массой 0,1г происходят согласно уравнению x = Acoswt, где А =5см; w =20 с-1 . Максимальное значение кинетической энергии равно:

A) 50 мДж; В) 25 мкДж; С) 50 Дж; D) 50 мкДж; Е) 100 Дж.

1.3.24 Колебательный контур состоит из катушки индуктивностью 1 мГн и конденсатора емкостью 2 нФ. Период колебаний в контуре равен:

А) с; В) с; С) с; D) с; Е) с.

1.3.25 Колебательный контур состоит из катушки индуктивностью 1 мГн и конденсатора емкостью 2 нФ. Циклическая частота колебаний в контуре равна:

А) 4,5.106 с-1; В) 2.106 с-1; С) 0,71 с-1; D) с-1; Е) 2,24. 106 с-1.

1.3.26 Емкость и индуктивность контура заменили другими, вдвое большими. Как изменится период колебаний контура?

А) Не изменится. В) Увеличится в 2 раза. С) Увеличится в 4 раза.

D) Уменьшится в 4 раза. Е) Уменьшится в 2 раза.

1.3.27 Как изменится частота колебаний в колебательном контуре при увеличении индуктивности катушки в 4 раза?

А) увеличится в 4 раза; В) уменьшится в 4 раза;

С) не изменится; D) уменьшится в 2 раза; Е) увеличится в 2 раза.

1.3.28 Величина заряда на пластинах конденсатора колебательного контура изменяется по закону . Емкость конденсатора 2.10-6 Ф. Индуктивность контура равна:

А) 0,05 мГн; В) 50 Гн; С) 200 Гн; d) 5 мГн; Е) 2.10-14Гн.

1.3.29 Заряд конденсатора в колебательном контуре меняется по закону Напряжение на обкладках U 0 = 220В. Ёмкость конденсатора равна:

A) 20мкФ; B) 44мкФ; C) 2мкФ; D) 4,4мкФ; E) 22мкФ

1.3.30 Колебательный контур имеет индуктивность 1,6 мГн, электроёмкость 0,04 мкФ и максимальное напряжение на зажимах 200 В. Если сопротивление контура пренебрежимо мало, то максимальный ток в

контуре равен:

А) 2А; В) 1А; С) 0,08А; D) 8А; Е) 10А.

1.3.31 При гармонических электромагнитных колебаниях в колебательном контуре максимальное значение энергии электрического поля конденсатора 50Дж, максимальное значение энергии магнитного поля катушки 50 Дж. Изменение во времени полной энергии контура будет:

А) изменяется от 0 до 50 Дж; В)изменяется от 0 до 100 Дж;

С) не изменяется и равна 100 Дж; D) не изменяется и равна 50 Дж;

Е) не изменяется и равна 150 Дж.

1.3.32 Энергия магнитного поля катушки равна 4,8.10-3 Дж, а индуктивность L = 0,24 Гн Сила тока в колебательном контуре в момент полной разрядки конденсатора равна:

А) 2А; В) 1,4А; С) 0,14А; D) 0,2А; Е) 0,4А.

1.3.33 Амплитуда затухающий колебаний уменьшилась в е 2 раз за 100 колебаний. Логарифмический декремент затухания равен:

А) 13; В) 50; С) 0,02; d) 2; Е) 5.

1.3.34 Амплитуда затухающих колебаний уменьшается в e 2 раз за 50 секунд. Коэффициент затухания β  равен:

А) 0,04; В) 0,02; С) 0,01; d) 0,08; E) 0,05.

1.3.35 При увеличении циклической частоты колебаний в 2 раза ёмкостное сопротивление в цепи переменного тока:

А) возрастает в 2 раза; В) уменьшается в 2 раза;

С) увеличивается в 4 раза; D) уменьшается в 4 раза;

Е) не изменяется.

1.3.36 При увеличении циклической частоты колебаний в 2 раза индуктивное сопротивление в цепи переменного тока:

А) возрастает в 2 раза; В) уменьшается в 2 раза;

С) увеличивается в 4 раза; D) уменьшается в 4 раза;

Е) не изменяется.

1.3.37 Установите неправильное утверждение:

А) закон Ома для переменного тока имеет вид I = ;

B) индуктивное сопротивление определяется по формуле ХL = Lω;

C) ёмкостное сопротивление определяется по формуле ХС = Сω;

D) реактивное сопротивление равно ( – 1/ );

Е) полное сопротивление цепи переменного тока определяется по формуле: .

1.3.38 Уравнение колебаний источника волн х = 2sin200πt. Модуль скорости

распространения колебаний в среде 400 м/с. Длина волны равна:

А) 2 м; В) 2 π м; С) 4 м; d) 4 π м; Е) π /2 м.

1.3.39 Уравнение колебаний источника волн х =2 sin 100 p t, длина волны 8 м. Модуль скорости распространения колебаний в среде равен:

А) 400 м/с; В) 100 p м/с; С) 4 м/с; D) 4 p м/с; Е) 12,5 p м/с.

1.3.40 Колебания источника волн описываются уравнением м. Скорость распространения волны 3 м/с. Смещение точки среды на расстоянии 0,75 м от источника в момент времени 0,5с равно:

А) 0,04 м; В) 0,04 м; С) 0,08 м; D) 0,06 м; Е) 0,24м.

1.3.41 Плоская волна x (x, t) = Acos (wt - kx) распространяется в упругой среде, причём её источник находится в плоскости х =0. Скорость точек среды, отстоящих от источника на расстоянии х = l/ 6, по истечении времени

t = T /4 после начала колебаний источника равна:

А) - Aw /2; B) Aw 2/2; C) Aw; D) - Aw; Е) А / w.

1.3.42 Плоская волна ξ (x, t) = Acos (ωt - kx) распространяется в упругой среде. Частица среды находится на расстоянии х = λ /2 м от источника колебаний. Амплитуда колебаний А = 0,5м. Смещение частицы в момент времени t= T /2 равно:

A) 0; B) 0,25 м; C) 0,5 м; D) 1м; E) 1,5м.

1.3.43 Сигнал радиолокатора вернулся через 2 мкс, отразившись от скалы. Скала находится на расстоянии: А)3000 м; В)600 м; С)300 м; D)1500 м; Е)150 м.

1.3.44 Колебания источника плоских волн описываются уравнением

у = (0,08 соsp t) м. Скорость распространения колебаний 3 м/с. Амплитуда колебаний точки среды, находящейся на расстоянии 0,75 м от источника в момент времени 0,5с равно:

А) 0,04 м; В) 0,04 м; С) 0,08 м; D) 0,06 м; Е) 0,24.

1.3.45 Поперечная волна с частотой 200 Гц распространяется в среде со скоростью 400 м/с вдоль оси OX. Разность фаз колебаний точек, расстояние между которыми Dх = 1м, равна:

А) π рад; В) (π /2) рад; С) 2 π рад; D) (π /3) рад; Е) (π /4) рад.

1.3.46 Разность фаз двух волновых движений, заданных уравнениями и , равна:

А) p; В) 2 p; С) ; D) 6 p; Е) 12 p.

1.3.47 Скорость распространения электромагнитных волн υ в среде с показателем преломления n, диэлектрической и магнитной проницаемостями соответственно ε и μ выражается формулой:

(с- скорость света в вакууме)

А) υ = ; В) ; С) ; D) ; Е) .

1.3.48 Длина волны 1,6 м. Ближайшие частицы, совершающие колебания в противоположных фазах, находятся на расстоянии:

А) 0,8м; В) 0,4м; С) 1,6м; D) 0,2м; Е) 3,2м.

1.3.49 Фазовая скорость волны равна 1500 м/с, частота колебаний равна 500 Гц. Длина волны равна:

А) 0,3м; В) 75 км; С) 3м; D) 7,5 км; Е) 30 км.

1.3.50 Волновое число k выражается формулой:

А) πλ /2; В) π /2 λ; С) λπ; D) 2 π / λ; Е) λ /2 π.

2 ЭЛЕМЕНТЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ И ФОТОМЕТРИИ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: