Поперечного сечения

Подобное движение газа наблюдается во впускном коллекторе карбюраторного двигателя, где подогрев осуществляется с целью испарения топливной пленки. Подводом теплоты к газу, движущемуся в трубе постоянного сечения, можно изменить скорость его движения. Процесс подвода теплоты вносит особый вид сопротивления – при подогреве движущегося газа полное давление падает.

Для получения зависимостей, связывающих изменение скорости с подводом теплоты (dQ), воспользуемся полученными ранее уравнениями:

× неразрывности ;

× состояния в дифференциальной форме .

Объединяя эти уравнения, получим

.

С помощью уравнения Эйлера исключим

и преобразуем полученное уравнение

. (2.57)

Правую часть заменим уравнением энергии

,

после чего уравнение (2.57) примет вид

,

или, использую число Маха, окончательно получим

. (2.58)

Из уравнения (2.58) следует, что при М < 1 подвод теплоты приводит к ускорению потока, отвод – к торможению его.

При М > 1 подвод теплоты приводит к торможению потока, отвод – к ускорению потока.

Подвод теплоты вызывает изменение температуры газа и температуры изэнтропически заторможенного газа , наблюдаемых до участка подогрева, на величину , и , причем за участком прогрева вновь устанавливается адиабатическое течение с температурами и .

Полагая, что приток теплоты не нарушает баланса массы и количества движения, для газа на участке подогрева воспользуемся уравнениями:

× неразрывности ;

× и импульсов .

Преобразуем эти уравнения к виду:

;

. (2.59)

Разделим второе уравнение на первое и получим связь числа М с термодинамической температурой

.

Здесь постоянная величина объединена с const, стоящей в правой части.

Учитывая связь между термодинамической температурой Т и температурой адиабатически, изэнтропически заторможенного газа получим

.

Применим эти равенства к двум сечениям потока, ограничивающим участок подогрева,

. (2.60)

. (2.61)

Приведем некоторые вычисления.

Предположим , К. Подводом теплоты поток ускоряется до . Определим температуру по формуле (2.60).

К.

Предположим , К. Подводом теплоты поток замедляется до . Определим температуру .

.

К.

Подвод теплоты при любом движении увеличивает термодинамическую температуру и температуру торможения.

Для определения уменьшения давления и плотности зададимся соотношением температур

и числом М 1 до прохождения участка подогрева. По (2.60) найдем М 2, и затем по (2.59) отношение давлений

.

Для определения соотношения плотностей применим уравнение состояния

.

В качестве примера выполним следующие расчеты.

Подводом теплоты при поток разгоняется до . Определим изменение статического давления

.

Подводом теплоты при поток замедляется до . Соотношение давлений за счет этого изменится

.

При подводе теплоты к газу при М < 1 статическое давление падает, а при М > 1 возрастает.

При разгоне газа от до за счет подвода теплоты произойдет изменение плотности

.

При замедлении потока от до за счет подвода теплоты сотношение плотностей изменится

.

При подводе теплоты к движущемуся газу при М < 1 плотность падает, а при М > 1 возрастает.

При значительных скоростях течения плотность газа при подогреве уменьшается не только из-за повышения температуры, но и вследствие понижения статического давления. В связи с этим скорость газа увеличивается вдоль трубы быстрее, чем температура. Скорость звука, которая ~ , увеличивается вдоль трубы значительно медленнее, чем скорость потока. По этой причине число по длине трубы растет при М < 1.

Поток, имеющий любую начальную скорость, можно за счет соответствующего подогрева довести до критической скорости (М 2 = 1). Но никаким подогревом нельзя перевести поток в цилиндрической трубе в сверхзвуковую область. Это явление носит название "тепловой кризис".

После того как в конце трубы достигается кризис, скорость потока в начале трубы не может быть увеличена никакими способами.

Если по достижению кризиса продолжать подогрев газа, то величина критической скорости в конце трубы растет, а скорость в начале трубы падает. То есть заданному количеству теплоты соответствует совершенно определенное предельное значение числа М в начале трубы.

Энтальпия («теплосодержание») заторможенного газа складывается из энтальпии в потоке и кинетической энергии:

; .

Вследствие подвода теплоты энтальпия в конце трубы больше, чем в ее начале, на величину подведенного количества теплоты

.

Введем в рассмотрение функцию

.

Вычислим производную от этой функции

.

Функция f (M) имеет максимум при М = 1, и этот максимум равен

.

На рисунке приведен график функции f (M) для воздуха (k = 1,4)

Как видно из графика и формулы (2.61) подогрев газа при М 1 < 1 вызывает возрастание функции f (M 2) и числа М 2, а при М 1 > 1, наоборот приводит к убыванию числа М 2. Следовательно, подвод теплоты к дозвуковому потоку ускоряет его, отвод теплоты – замедляет. В случае сверзвукового потока подвод теплоты замедляет его, а отвод – ускоряет.

Так, например, при Т 01 = 540К и М 1 = 0,5 увеличение температуры на 20% приводит к возрастанию числа М до значения М 2 = 0,6. При той же начальной температуре и числе М 1 = 1,4 подогрев газа на 7% приведет к уменьшению числа М до М 2 = 1. При этом давление увеличится более чем на 50%.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: