Законы распределения случайных величин

Полным описанием случайной величины, а, следовательно, и погрешности является ее закон распределения. Этим законом распределения и определяется характер появления различных результатов отдельных измерений в ряду наблюдений.

В практике электрических измерений встречаются различные законы распределения. Это равномерное (прямоугольное) распределение, нормальное распределение Гаусса, распределение c2 (хи-квадрат), распределение t -Стьюдента и др. Одним из наиболее распространенных законов распределения погрешностей является нормальный закон (Гаусса), который базируется на центральной предельной теореме теории вероятностей, согласно которой нормальное распределение плотности вероятности имеет сумма бесконечно большого числа бесконечно малых случайных возмущений с любыми распределениями. Применительно к измерениям это означает, что нормальное распределение случайных погрешностей возникает тогда, когда на результат измерения действует множество случайных возмущений и ни одно из которых не является преобладающим. Практически, суммарное воздействие даже сравнительно небольшого числа возмущений приводит к закону распределения результатов и погрешностей измерений, близкому к нормальному. Закон нормального распределения имеет фундаментальное значение для теории обработки результатов измерений. Он позволяет вести расчеты даже тогда, когда действительный закон неизвестен.

Математически нормальное распределение случайных погрешностей может быть представлено формулой

,

где p() – плотность вероятности случайной погрешности ; s - среднее квадратическое отклонение.

Характер кривых, описываемых этим уравнением для двух значений s (), показан на рис.4.1.

Из этих кривых видно, что чем меньше s, тем чаще встречаются малые случайные погрешности, т.е. тем точнее выполнены измерения. Кривые симметричны относительно оси ординат, так как положительные и отрицательные погрешности встречаются одинаково часто.

Основные характеристики законов распределения.

Основными характеристиками являются математическое ожидание и дисперсия.

Математическое ожидание ряда наблюдений есть величина, относительно которой рассеиваются результаты отдельных измерений. Если систематическая погрешность отсутствует, и разброс результатов отдельных измерений обусловлен только случайной погрешностью, то математическим ожиданием такого ряда наблюдений будет истинное значение измеряемой величины. Если же результаты отдельных измерений кроме случайной погрешности содержат постоянную систематическую погрешность, то математическое ожидание ряда наблюдений будет смещено от истинного значения измеряемой величины на значение систематической погрешности.

ДисперсияD ряда наблюдений характеризует степень рассеивания (разброса) результатов отдельных наблюдений вокруг математического ожидания. Чем меньше дисперсия, тем меньше разброс отдельных результатов, тем точнее выполнены измерения. Следовательно, дисперсия может служить характеристикой точности проведенных измерений. Однако, дисперсия выражается в единицах в квадрате измеряемой величины. Поэтому в качестве характеристики точности ряда наблюдений наиболее часто применяют среднее квадратическое отклонение результата наблюдения (СКО) s, равное корню квадратному из дисперсии с положительным знаком и выражаемое в единицах измеряемой величины. Среднее квадратическое отклонение, отнесенное к значению измеряемой величины, может быть выражено в относительных единицах или процентах.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: