Исследование на устойчивость по первому приближению

Рассмотрим автономную систему

(5.1)

Пусть – положение равновесия системы (5.1). Будем предполагать, что функции дважды непрерывно дифференцируемы в некоторой окрестности точки .

Разложим каждую из функций в ряд Тейлора в окрестности точки a:

Здесь , , , .

Тогда система (5.1) будет иметь вид:

(5.2)

Отбросив в разложении (5.2) нелинейный член , квадратичный по , получим линейную систему

. (5.3)

Система (5.3) – линеаризованная в окрестности точки система (5.1), или система линейного приближения (система первого приближения).

Теорема 5.1 (об устойчивости по первому приближению). Пусть функция дважды непрерывно дифференцируема в некоторой окрестности положения равновесия . Если вещественные части всех собственных значений матрицы Якоби отрицательны, то положение равновесия асимптотически устойчиво по Ляпунову и справедлива оценка

,

где – некоторые положительные постоянные, для всех достаточно близких к точке .

Замечание 5.1. Теорема 5.1 не охватывает так называемый критический случай, когда хотя бы одно собственное значение матрицы имеет вещественную часть равную нулю, а остальные ее собственные значения имеют отрицательные вещественные части. В этом случае на устойчивость решения начинают влиять квадратичные члены и исследование на устойчивость по первому приближению невозможно.

Теорема 5.2 (о неустойчивости по первому приближению). Пусть функция дважды непрерывно дифференцируема в некоторой окрестности положения равновесия . Если хотя бы одно собственное значение матрицы Якоби имеет положительную вещественную часть, то положение равновесия неустойчиво по Ляпунову.

Замечание 5.2. Теоремы об устойчивости и неустойчивости по первому приближению остаются справедливыми и в том случае, когда исходная система неавтономная, то есть имеет вид . При этом предполагается, что и система может быть представлена в виде .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: