Задачи и методы обеззараживания. Классификация методов обеззараживания

Вода природных источников питьевого водоснабжения, как правило, не соответствует гигиеническим требованиям к питьевой воде и требует перед подачей населению подготовки - очистки и обеззараживания. Очистка воды, включающая её осветление и обесцвечивание, является первым этапом в подготовке питьевой воды. В результате её из воды удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов. Но часть патогенных бактерий и вирусов проникает через очистные сооружения и содержится в фильтрованной воде. В практике коммунального водоснабжения используют реагентные (хлорирование, озонирование, воздействие препаратами серебра ), безреагентные ( ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) и комбинированные методы обеззараживания воды. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений. Безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями. А в комбинированных методах используются одновременно химическое и физическое воздействия. При выборе метода обеззараживания следует учитывать опасность для здоровья человека остаточных количеств биологически активных веществ, применяемых для обеззараживания или образующихся в процессе обеззараживания, возможность изменения физико-химических свойств воды.

При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания. При физических способах необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.

Хлорирование. Самый распространенный и проверенный способ дезинфекции воды - первичное хлорирование. В настоящее время этим методом обеззараживается 98,6 % воды. Причина этого заключается в повышенной эффективности обеззараживания воды и экономичности технологического процесса в сравнении с другими существующими способами. Хлорирование позволяет не только очистить воду от нежелательных органических и биологических примесей, но и полностью удалить растворенные соли железа и марганца. Другое важнейшее преимущество этого способа - его способность обеспечить микробиологическую безопасность воды при ее транспортировании пользователю благодаря эффекту последействия.

Существенный недостаток хлорирования - присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений. Озонирование. Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1-6 мг/л при контакте в 8-15 мин; количество остаточного озона должно составлять не более 0,3-0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб. Другие реагентные способы дезинфекции воды. Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше. К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации. Применение активных углей и катионитов, насыщенных серебром, преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения - большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Физические методы обеззараживания питьевой воды Кипячение. Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение. При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения. Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Ультрафиолетовое излучение. Обработка УФ-излучением - перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Электроимпульсный способ. Достаточно новым способом обеззараживания воды является электроимпульсный способ - использование импульсивных электрических разрядов (ИЭР).Сущность метода заключается в возникновении электрогидравлического удара. Радиационное обеззараживание Имеются предложения использования для обеззараживания воды гамма-излучения. Гамма-установки типа РХУНД работают по следующей схеме: вода поступает в полость сетчатого цилиндра приёмно-разделительного аппарата, где твёрдые включения увлекаются вверх шнеком, отжимаются в диффузоре и направляются в бункер - сборник. Затем вода разбавляется условно чистой водой до определённой концентрации и подаётся в аппарат гамма-установки, в котором под действием гамма происходит процесс обеззараживания. Гамма-излучение оказывает угнетающее действие на активность микробных дегидраз (ферментов). При больших дозах гамма-излучения погибает большинство возбудителей таких опасных заболеваний как тиф, полиомиелит и др.

77. Хлорирование воды. Дозаторы, ёмкости для хранения хлора. Для обеззараживания воды хлорированием на водоочист­ных комплексах используют хлорную известь, хлор и его про­изводные, под действием которых бактерии, находящиеся в во­де, погибают в результате окисления. Хлорирование воды предот­вращает распространение эпидемий, так как большинство патогенных бактерий (бациллы брюшного тифа, туберкулеза и дизентерии, вибрионы холеры, вирусы полиомиелита и энцефа­лита) весьма нестойки по отношению к хлору. Спорообразующих бактерий хлор не уничтожает, что является одним из не­достатков этого метода обеззараживания.

Для качественного хлорирования необходимо хорошее пере­мешивание, а затем не менее чем 30-минутный контакт хлора с водой, прежде, чем вода поступит к потребителю. Контакт может происходить в резервуаре фильтрованной воды или в трубопроводе подачи воды потребителю, если последний имеет достаточную длину без водоразбора. Доза остаточного хлора 0,3... 0,5 мг хлора на 1мл воды. Хлорирование воды осуществляется жидким (газообраз­ным) хлором. На малых водоочистных комплексах (до 3000 м3/сут) допускается применение хлорной извести. При плюсовых температурах и атмосферном давлении хлор пред­ставляет собой газ зеленовато-желтого цвета с удушливым за­пахом и плотностью, значительно большей, чем плотность воз­духа. При по­вышении давления хлор пере­ходит в жидкое состояние. В таком виде его перевозят и хранят в специальных стальных емкостях (при давлении 0,6…1,0МПа).

В настоящее время заводы по производству хлора постав­ляют хлор в основном в баллонах двух типов: Е-24 (рис. 14.1, а) вместимостью до 25... 30 кг жидкого хлора и Е-54 с содержа­нием хлора до 100 кг и в бочках. На крупных водоочистных комплексах производительностью более 100 тыс. м3/сут хлор доставляют обычно в специальных железнодорожных цистер­нах вместимостью до 48 т жидкого хлора, а хранят его в боч­ках (рис. 14.1,6), которые в зависимости от размеров вмеща­ют от 700 до 3000 кг жидкого хлора. Хлорное хозяйство долж­но обеспечивать прием, хранение, испарение жидкого хлора, дозирование газообразного хлора с получением хлорной воды.

Хлорное хозяйство располагают в отдельно размещаемых хлораторных, где сблокированы расходный склад хлора, испа­рительная и хлордозаторная. Расходный склад хлора можно размещать в отдельных зданиях или вплотную к хлораторной, отделяя его глухой стеной без проемов. Склад хлора в со­ставе хлораторных можно не предусматривать, в этом случае в хлордозаторной разрешается хранение одного баллона жид­кого хлора массой не более 70 кг. Трубопроводы передачи хлорной воды выполня­ют из поливинилхлорида, резины, полиэтилена высокой плот­ности и др.

В водоподготовке применяют дозаторы растворов и суспен­зий, газов и сухих реагентов, которые можно классифицировать на три вида: дозаторы постоянной дозы; пропорциональные и насосы-дозаторы.Объемные дозаторы подают определенный объем вещества за расчетный промежуток времени, массовые — мас­совое количество вещества. Основное отличие их состоит в сле­дующем: объемные дозаторы, которые конструктивно проще и дешевле, имеют точность дозирования 3...5%, массовые — 1%; массовые дозаторы легче оборудовать записывающим устрой­ством для регистрации дозируемого реагента и устройством для автоматической подачи реагента в воду. В настоящее время широко применяют вакуумные хлораторы ЛОНИИ-100

Эффект подавления бактериальной жизни при хлорирова­нии зависит от дозы введенного хлора и продолжительности контакта его с водой. Поэтому хлоропоглощаемость одной и той же воды, равная суммарному расходу хлора на окисление мик­роорганизмов, органических и неорганических примесей, — ве­личина переменная, зависящая от дозы введенного хлора, про­должительности контакта, величины pH, температуры воды и др.На практике в соответствии с качеством исходной воды при­меняют одно- или двукратное хлорирование воды. При обработке высокоцветных вод, а также вод, богатых органически­ми веществами и бактериями, применяют двукратное хлориро­вание (т. е. присутствует предварительное хлорирование), необходимо для окисления органических защитных коллоидов, препятству­ющих процессу коагуляции, а также окисления гуминовых ве­ществ, обусловливающих цветность воды, с целью экономии коагулянта, расходуемого на ее обесцвечивание. Доза хлора на предварительное хлорирование значительно выше той, которая вводится в фильтрованную воду, и может доходить до 5 мг/л. В некоторых случаях может возникнуть необходимость хло­рирования воды повышенными дозами хлора, т. е. применения так называемого перехлорирования, гарантирующего высокий эффект ее обеззараживания. После перехлорирования воды ос­таточная концентрация хлора в ней достаточно велика (1…7 мг/л), поэтому приходится прибегать к последующему ее дехлорированию. Для этого чаще всего применяют обработку воды сульфитом натрия, сернистым газом и фильтрование де­хлорируемой воды через активированный уголь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: