Парная корреляция и парная линейная регрессия

Корреляционная связь (частный случай стохастической) – связь, проявляющаяся при достаточно большом числе наблюдений в виде определенной зависимости между средним значением результативного признака и признаками-факторами.

Задача корреляционного анализа – измерение тесноты связи между варьируемыми признаками и оценка факторов, оказывающих наибольшее влияние.

Задача регрессионного анализа – выбор типа модели (формы связи), устанавливающих степени влияния независимых переменных.

Связь признаков проявляется в их согласованной вариации, при этом одни признаки выступают как факторные, а другие – как результативные. Причинно-следственная связь факторных и результативных признаков характеризуется по степени:

· тесноты;

· направлению;

· аналитическому выражению.

Для оценки параметров уравнений регрессии наиболее часто используется метод наименьших квадратов (МНК), суть которого заключается в следующем требовании: искомые теоретические значения результативного признака должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических (фактических) значений, т.е.

, (8.1)

При изучении связей показателей применяются различного вида уравнения прямолинейной и криволинейной связи. Так, при анализе прямолинейной зависимости применяется уравнение:

(8.2)

Это наиболее часто используемая форма связи между коррелируемыми признаками, при парной корреляции она выражается уравнением (8.2), где а 0 – среднее значение в точке x =0, поэтому экономической интерпретации коэффициента нет; а 1 – коэффициент регрессии, показывает, на сколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.

При криволинейной зависимости применяется ряд математических функций:

полулогарифмическая (8.3)

показательная (8.4)

степенная (8.5)

параболическая (8.6)

гиперболическая (8.7)

Система нормальных уравнений МНК для линейной парной регрессии имеет следующий вид:

(8.8)

Отсюда можно выразить коэффициенты регрессии:

;

. (8.9)

При численности объектов анализа до 30 единиц возникает необходимость проверить, насколько вычисленные параметры типичны для отображаемого комплекса условий, не являются ли полученные значения параметров результатом действия случайных причин. Значимость коэффициентов регрессии применительно к совокупности n <30 определяется с помощью t-критерия Стьюдента. При этом вычисляются фактические значения t-критерия:

для параметра а 0: , (8.10)

для параметра а 1: . (8.11)

В формулах (8.10) и (8.11):

– среднее квадратическое отклонение результативного признака от выровненных значений . (8.12)

– среднее квадратическое отклонение факторного признака от общей средней . (8.13)

На практике часто приходится исследовать зависимость результативного признака от нескольких факторных признаков. Аналитическая форма связи результативного признака от ряда факторных признаков выражается и называется многофакторным (множественным) уравнением регрессии.

Линейное уравнение множественной регрессии

. (8.14)

Система нормальных линейных уравнений МНК для оценки коэффициентов двухфакторной регрессии имеет вид:

(8.15)

Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции, который рассчитывается по одной из формул:

(8.16)

. (8.17)

Оценка линейного коэффициента корреляции

Значение r Характер связи Интерпретация связи
r = 0 Отсутствует Изменение x не влияет на изменения y
0 < r < 1 Прямая С увеличением x увеличивается y
-1 > r > 0 Обратная С увеличением x уменьшается y и наоборот
r = 1 Функциональная Каждому значению факторного признака строго соответствует одно значение результативного

Значимость линейного коэффициента корреляции проверяется на основе t- критерия Стьюдента. Для этого определяется фактическое значение критерия :

, (8.18)

Вычисленное по формуле (8.18) значение сравнивается с критическим , который получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы ν. Коэффициент корреляции считается статистически значимым, если t расч превышает : t расч > .

Универсальным показателем тесноты связи является теоретическое корреляционное отношение:

, (8.19)

где общая дисперсия эмпирических значений y, характеризует вариацию результативного признака за счет всех факторов, включая х;

факторная дисперсия теоретических значений результативного признака, отражает влияние фактора х на вариацию у;

остаточная дисперсия эмпирических значений результативного признака, отражает влияние на вариацию у всех остальных факторов кроме х.

По правилу сложения дисперсий:

, т.е. . (8.20)

Оценка связи на основе теоретического корреляционного отношения (шкала Чеддока):

Значение Характер связи   Значение Характер связи
η = 0 Отсутствует   0,5 ≤ η < 0,7 Заметная
0 < η < 0,2 Очень слабая   0,7 ≤ η < 0,9 Сильная
0,2 ≤ η < 0,3 Слабая   0,9 ≤ η < 1 Весьма сильная
0,3 ≤ η < 0,5 Умеренная   η = 1 Функциональная

Для линейной зависимости теоретическое корреляционное отношение тождественно линейному коэффициенту корреляции, т.е. η = | r|.

Множественный коэффициент корреляции в случае зависимости результативного признака от двух факторов вычисляется по формуле:

, (8.21)

где парные коэффициенты корреляции между признаками.

Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: .

Значимость коэффициента множественной детерминации, а соответственно и адекватность всей модели и правильность выбора формы связи можно проверить с помощью критерия Фишера:

, (8.22)

где R 2 – коэффициент множественной детерминации (R 2 );

k – число факторных признаков, включенных в уравнение регрессии.

Связь считается существенной, если F расч > F табл – табличного значения F- критерия для заданного уровня значимости α и числе степеней свободы ν1 = k2 = n – k – 1.

Частные коэффициенты корреляции характеризуют степень тесноты связи результативного признака и фактора, при элиминировании его взаимосвязи с остальными факторами, включенными в анализ. Расчет частных коэффициентов корреляции в случае двухфакторной регрессии (в первом случае исключено влияние факторного признака х 2, во втором – х 1):

; , (8.33)

где r – парные коэффициенты корреляции между указанными в индексе переменными.

Для оценки сравнительной силы влияния факторов, по каждому фактору рассчитывают частные коэффициенты эластичности:

, (8.34)

где – среднее значение соответствующего факторного признака;

– среднее значение результативного признака;

– коэффициент регрессии при i -м факторном признаке.

Данный коэффициент показывает, на сколько процентов следует ожидать изменения результативного показателя при изменении фактора на 1% и неизменном значении других факторов.

Частный коэффициент детерминации показывает, на сколько процентов вариация результативного признака объясняется вариацией i -го признака, входящего в множественное уравнение регрессии, рассчитывается по формуле:

, (8.35)

где – парный коэффициент корреляции между результативным и i -м факторным признаком;

– соответствующий стандартизованный коэффициент уравнения множественной регрессии:

. (8.36)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: