Спектральные оценки по конечным последовательностям данных

Спектральная оценка, получаемая по конечной записи данных, характеризует некоторое предположение относительно той истинной спектральной функции, которая была бы получена, если бы в нашем распоряжении имелась запись данных бесконечной длины. Именно поэтому поведение и характеристики спектральных оценок должны описываться с помощью статистических терминов. Общепринятыми статистическими критериями качества оценки являются ее смещение и дисперсия. Аналитическое определение этих величин обычно наталкивается на определенные математические трудности, поэтому на практике просто совмещают графики нескольких реализаций спектральной оценки и визуально определяют смещение и дисперсию как функции частоты. Те области совмещенных графиков спектральных оценок, где экспериментально определенное значение дисперсии велико, будут свидетельствовать о том, что спектральные особенности, видимые в спектре отдельной реализации, не могут считаться статистически значимыми. С другой стороны, особенности совмещенных спектров в тех областях, где эта дисперсия мала, с большой достоверностью могут быть соотнесены с действительными частотными составляющими анализируемого сигнала. Однако в случае коротких записей данных часто не удается получить несколько спектральных оценок, да и сам статистический анализ отдельных спектральных оценок, полученных по коротким записям данных, в общем, случае представляет собой весьма трудную проблему.[1]

Общая картина

Из формального определения спектра, следует, что спектр является некоторой функцией одних лишь статистик второго порядка, относительно которых в свою очередь предполагается, что они остаются неизменными, или стационарными во времени. Следовательно, такой спектр не передает полной статистической информации об анализируемом случайном процессе, а значит, дополнительная информация может содержаться в статистиках третьего и более высокого порядка. Кроме того, многие обычные сигналы, которые приходится анализировать на практике, не являются стационарными. Однако короткие сегменты данных, получаемые из более длинной записи данных, можно считать локально стационарными. Анализируя изменения спектральных оценок от одного такого сегмента к другому, можно затем составить представление и об изменяющихся во времени статистиках сигналов, то есть нестационарных.

Основные определения и теоремы классического спектрального анализа


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: