Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram


Пример 3.2.

Пусть первичный алфавит состоит из двух знаков а и b с вероятностями, соответственно, 0,75 и 0,25. Сравнить избыточность кода Хаффмана при алфавитном и блочном двухбуквенном кодировании.

При алфавитном кодировании:

I(А) = 0,811, К(А,2) = 1, Q(A,2) = 0,233

При блочном двухбуквенном кодировании (очевидно, pij = pi ∙ pj):

I(А) = 1,623 (в пересчете на 1 знак - 0,811), К(А,2) = 1,688 (в пересчете на знак - 0,844), Q(A,2) = 0,040.

Таким образом, блочное кодирование обеспечивает построение более оптимального кода, чем алфавитное. При использовании блоков большей длины (трехбуквенных и более) избыточность стремится к 0 в полном соответствии с первой теоремой Шеннона.

 

Читайте также:

Пример 4.13

Классификация моделей

Контрольные вопросы и задания

Пример 5.3

Рекурсивные функции

Вернуться в оглавление: Теоретические основы информатики

Просмотров: 1338

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.225.9.188