Ex. 4. Answer the following questions.

1. What is an algebraic expression? 2. What algebraic expression is called polynomial (monomial, binomial)? 3. What are the terms of a polynomial? 4. What numbers in a polynomial are called coefficients (exponents, the constant term)? 5. How do we define the degree of a polynomial? 6. What are the fundamental operations of polynomials? 7. How is the sum of two polynomials obtained? 8. How is subtraction of polynomials performed? 9. How is the product of two polynomials obtained? 10. What is the rule of polynomial division?

Ex. 5. Find the English equivalents for the following Russian word combinations.

1. состоять из нескольких одночленов; 2. алгебраическое выражение; 3. образовывать многочлен; 4. знаки, предшествующие им; 5. состоять из одного или нескольких членов; 6. разместить таким образом; 7. сложить коэффициенты; 8. разместить делимое по возрастающим или убывающим показателям степени; 9. касающееся операции деления; 10. сложить произведения

a. to form a polynomial; b. to be compose of one or more terms; с. to consist of several monomials; d. to place in such a way; e. an algebraic expression; f. to add the products; g. signs preceding them; h. to arrange the dividend in ascending or descending powers; i. to add the coefficients; j. concerning the operation of division

Ex. 6. Give the proper English equivalents for the Russian expressions.

 a trinomial, descending, subtraction, obtain, a fraction, coefficients, terms, exponents, sum, remainder, fractional

1. Each of these polynomials is composed of членов. 2. In the algebraic expression 3x?+ 2x?+5 the constant multipliers 3, 2, 5 are called коэффициенты. 3. In the polynomial 2x?+ 5x?+9 the upper numbers 3 and 2 are called показателями степени. 4. A polynomial consisting of three terms is called трёхчлен. 5. One of the fundamental operations that had been applied to those polynomials before other operations was вычитанием. 6. The algebraic expression 2y?-3y?+2y is arranged in убывающим powers of the letter y. 7. Multiplying two polynomials we получаем a product. 8. If the остаток of division is zero, it is exact. 9. An expression, any term of which is дробь, is called a дробным expression. 10. Adding two polynomials we obtain a сумму.

﻿
Сейчас читают про: