Прямая, рассеянная и суммарная радиация


Солнце является источником корпускуляр­ного и электромагнитного излучений. Корпус­кулярное излучение не проникает в атмосфе­ру ниже 90 км, тогда как электромагнитное достигает земной поверхности. В метеороло­гии его называют солнечной радиацией или просто радиацией. Она составляет одну двух­миллиардную долю от всей энергии Солнца и проходит путь от Солнца до Земли за 8,3 мин. Солнечная радиация — источник энергии поч­ти всех процессов, совершающихся в атмо­сфере и на земной поверхности. Она в основ­ном коротковолновая и состоит из невидимой ультрафиолетовой радиации — 9 %, видимой световой — 47 % и невидимой инфракрасной — 44 %. Поскольку почти половина солнечной радиации представляет собой видимый свет, Солнце служит источником не только тепла, но и света — тоже необходимого условия для жизни на Земле.

Радиацию, приходящую к Земле непосред­ственно от солнечного диска, называют пря­мой солнечной радиацией. Ввиду того что расстояние от Солнца до Земли велико, а Зем­ля мала, радиация падает на любую ее по­верхность в виде пучка параллельных лучей.

Солнечная радиация обладает определен­ной плотностью потока на единицу площади в единицу времени. За единицу измерения ин­тенсивности радиации принято количество энергии (в джоулях или калориях1), которые получает 1 см2 поверхности в минуту при пер­пендикулярном падении солнечных лучей. На верхней границе атмосферы при среднем рас­стоянии от Земли до Солнца она составляет 8,3 Дж/см2 в мин, или 1,98 кал/см2 в мин. Эта величина принята в качестве международ­ного стандарта и называется солнечной по­стоянной (S0). Ее периодические колебания в течение года незначительны (+ 3,3 %) и обус­ловлены изменением расстояния от Земли до

1 1 кал=4,19 Дж, 1 ккал=41,9 МДж.

2 Полуденная высота Солнца зависит от географиче­ской широты и склонения Солнца.


Солнца. Непериодические колебания вызваны различной излучательной способностью Солн­ца. Климат на верхней границе атмосферы на­зывают радиационным или солярным. Он рас­считывается теоретически, исходя из угла на­клона солнечных лучей на горизонтальную поверхность.

В общих чертах солярный климат находит отражение на земной поверхности. В то же время реальная радиация и температура на Земле существенно отличаются от солярного климата за счет различных земных факторов. Главный из них — ослабление радиации в ат­мосфере за счет отражения, поглощения и рассеяния, а также в результате отражения радиации от земной поверхности.

На верхнюю границу атмосферы вся ради­ация приходит в виде прямой радиации. По данным С. П. Хромова и М. А. Петросянца, 21 % ее отражается от облаков и воздуха на­зад в космическое пространство. Остальная радиация поступает в атмосферу, где прямая радиация частично поглощается и рассеивает­ся. Оставшаяся прямая радиация (24 %) до­стигает земной поверхности, однако при этом ослабляется. Закономерности ослабления ее в атмосфере выражаются законом Бугера: S=S0· pm (Дж, или кал/см2, в мин), где S — количество прямой солнечной радиации, дос­тигшей земной поверхности, на единицу пло­щади (см2), расположенной перпендикулярно солнечным лучам, S0 — солнечная постоян­ная, р — коэффициент прозрачности в долях от единицы, показывающий, какая часть ра­диации достигала земной поверхности, т — длина пути луча в атмосфере.

Реально же солнечные лучи падают на зем­ную поверхность и на любой другой уровень атмосферы под углом менее 90°. Поток пря­мой солнечной радиации на горизонтальную поверхность называют инсоляцией (5,). Она вычисляется по формуле S1=S·sin h (Дж, или кал/см2, в мин), где h — высота Солнца2. На единицу горизонтальной поверхности, ес­тественно, приходится меньшее количество



энергии, чем на единицу площади, располо­женной перпендикулярно солнечным лучам (рис. 22).

В атмосфере поглощается около 23 % и рассеивается около 32 % прямой солнечной радиации, входящей в атмосферу, причем 26 % рассеянной радиации приходит затем к земной поверхности, а 6 % уходит в Космос.

Солнечная радиация подвергается в атмо­сфере не только количественным, но и каче­ственным изменениям, поскольку газы возду­ха и аэрозоли поглощают и рассеивают сол­нечные лучи избирательно. Основными поглотителями радиации являются водяной пар, облака и аэрозоли, а также озон, кото­рый сильно поглощает ультрафиолетовую ра­диацию. В рассеянии радиации участвуют мо­лекулы разных газов и аэрозоли. Рассеяние — отклонение световых лучей во все стороны от первоначального направления, так что рассе­янная радиация приходит к земной поверх­ности не от солнечного диска, а от всего не­бесного свода. Рассеяние зависит от длины волн: по закону Рэлея, чем короче длина вол­ны, тем интенсивнее рассеяние. Поэтому боль­ше всех остальных рассеиваются ультрафио­летовые лучи, а из видимых — фиолетовые и синие. Отсюда голубой цвет воздуха и соот­ветственно неба в ясную погоду. Прямая же радиация оказывается в основном желтой, по­этому солнечный диск видится желтоватым. При восходе и заходе Солнца, когда путь луча в атмосфере длиннее и рассеяние боль­ше, поверхности достигают только красные лу­чи, отчего Солнце кажется красным. Рассеян­ная радиация обусловливает свет днем при пасмурной погоде и в тени при ясной погоде, с нею связано явление сумерек и белых но­чей. На Луне, где нет атмосферы и соответ­ственно рассеянной радиации, предметы, по­падающие в тень, становятся полностью не­видимыми.

С высотой, по мере уменьшения плотнос­ти воздуха и соответственно количества рас­сеивающих частиц, цвет неба становится тем­нее, переходит сначала в густо-синий, потом в сине-фиолетовый, что хорошо видно в го­рах и отражено на гималайских пейзажах Н. Рериха. В стратосфере цвет воздуха чер­но-фиолетовый. По свидетельству космонав­тов, на высоте 300 км цвет неба черный.

При наличии в атмосфере крупных аэро­золей, капель и кристаллов наблюдается уже не рассеяние, но диффузное отражение, а по­скольку диффузно отраженная радиация пред­ставляет собой белый свет, то цвет неба ста­новится белесым.

Прямая и рассеянная солнечная радиация имеют определенный суточный и годовой ход, который зависит прежде всего от высоты Солн-


Рис. 22. Приток солнечной радиации на поверхность АВ, перпендикулярную к лучам, и на горизонтальную поверх­ность АС (по С. П. Хромову)

ца над горизонтом, от прозрачности воздуха и облачности.

Поток прямой радиации в течение дня от восхода Солнца до полудня нарастает и потом убывает до захода Солнца в связи с измене­нием высоты Солнца и пути луча в атмосфе­ре. Однако, поскольку около полудня умень­шается прозрачность атмосферы за счет уве­личения водяного пара в воздухе и пыли и возрастает конвективная облачность, макси­мальные значения радиации смещены на пред-полуденные часы. Такая закономерность при­суща экваториально-тропическим широтам весь год, умеренным широтам летом. Зимой в умеренных широтах максимум радиации при­ходится на полдень.

Годовой ход среднемесячных значений пря­мой радиации зависит от широты. На эквато­ре годовой ход прямой радиации имеет вид двойной волны: максимумы в периоды весен­него и осеннего равноденствия, минимумы в периоды летнего и зимнего солнцестояния. В умеренных широтах максимальные значения прямой радиации приходятся на весенние (ап­рель в северном полушарии), а не на летние месяцы, так как воздух в это время прозрач­нее из-за меньшего содержания водяного па­ра и пыли, а также незначительной облачно­сти. Минимум радиации наблюдается в декаб­ре, когда наименьшая высота Солнца, короткий световой день, и это самый пасмурный месяц в году.

Суточный и годовой ход рассеянной ра­диации определяется изменением высоты Солнца над горизонтом и продолжительностью дня, а также прозрачностью атмосферы. Мак­симум рассеянной радиации в течение суток наблюдается днем при возрастании радиации в целом, хотя доля ее в утренние и вечерние часы больше, чем прямой, а днем, наоборот, прямая радиация преобладает над рассеянной. Годовой ход рассеянной радиации на экваторе в общем повторяет ход прямой. В остальных широтах она больше летом, чем зимой, из-за увеличения летом общего притока солнечной радиации.



Соотношение между прямой и рассеянной радиацией меняется в зависимости от высо­ты Солнца, прозрачности атмосферы и облач­ности.

Пропорции между прямой и рассеянной радиацией на разных широтах неодинаковы. В полярных и субполярных областях рассеян­ная радиация составляет 70 % от всего пото­ка радиации. На ее величину, кроме низкого положения Солнца и облачности, влияет так­же многократное отражение солнечной ради­ации от снежной поверхности. Начиная с уме­ренных широт и почти до экватора, прямая радиация преобладает над рассеянной. Осо­бенно велико ее абсолютное и относительное значение во внутриконтинентальных тропиче­ских пустынях (Сахара, Аравия), отличающих­ся минимальной облачностью и прозрачным сухим воздухом. Вдоль экватора рассеянная радиация вновь доминирует над прямой в свя­зи с большой влажностью воздуха и наличи­ем кучевых облаков, хорошо рассеивающих солнечную радиацию.

С возрастанием высоты места над уров­нем моря значительно увеличиваются абсолют-Рис. 23. Годовое количество суммарной солнечной ради­ации [МДж/(м2xгод)]


ная и относительная величины прямой радиа­ции и уменьшается рассеянная, так как становится тоньше слой атмосферы. На вы­соте 50—60 км поток прямой радиации при­ближается к солнечной постоянной.

Вся солнечная радиация — прямая и рассеянная, приходящая на земную поверх­ность, называется суммарной радиацией: (Q=S · sinh¤ +D где Q — суммарная радиация, S — прямая, D— рассеянная, h¤ — высота Солнца над горизонтом. Суммарная радиация составляет около 50 % от солнечной радиации, приходящей на верхнюю границу атмосферы.

При безоблачном небе суммарная радиа­ция значительна и имеет суточный ход с мак­симумом около полудня и годовой ход с мак­симумом летом. Облачность уменьшает ради­ацию, поэтому летом приход ее в дополуденные часы в среднем больше, чем в послеполуден­ные. По той же причине в первую половину года она больше, чем во вторую.

В распределении суммарной радиации на земной поверхности наблюдается ряд законо­мерностей.

Главная закономерность заключается в том, что суммарная радиация распределяется зонально, убывая от экваториально-тропи-



ческих широт к полюсам в соответствии с уменьшением угла падения солнечных лучей (рис. 23). Отклонения от зонального распре­деления объясняются различной облачностью и прозрачностью атмосферы. Наибольшие го­довые величины суммарной радиации 7200 — 7500 МДж/м2 в год (около 200 ккал/см2 в год) приходятся на тропические широты, где малая облачность и небольшая влажность воз­духа. Во внутриконтинентальных тропических пустынях (Сахара, Аравия), где обилие пря­мой радиации и почти нет облаков, суммар­ная солнечная радиация достигает даже более 8000 МДж/м2 в год (до 220 ккал/см2 в год). Вблизи экватора величины суммарной радиа­ции снижаются до 5600 — 6500 МДж/м в год (140—160 ккал/см2 в год) из-за значитель­ной облачности, большой влажности и мень­шей прозрачности воздуха. В умеренных ши­ротах суммарная радиация составляет 5000 — 3500 МДж/м2 в год (≈ 120 — 80 ккал/см2 в год), в приполярных — 2500 МДж/м в год (≈60 ккал/см2 в год). Причем в Антарктиде она в 1,5—2 раза больше, чем в Арктике, прежде всего из-за большей абсолютной вы­соты материка (более 3 км) и потому малой плотности воздуха, его сухости и прозрачнос­ти, а также малооблачной погоды. Зональ­ность суммарной радиации лучше выражена над океанами, чем над континентами.

Вторая важная закономерность суммар­ной радиации заключается в том, что мате­рики получают ее больше, чем океаны, бла­годаря меньшей (на 15—30 %) облачности над


континентами. Исключение составляют лишь приэкваториальные широты, поскольку днем над океаном конвективная облачность мень­ше, чем над сушей.

Третья особенность состоит в том, что в северном, более материковом полушарии суммарная радиация в целом больше, не­жели в южном океаническом.

В июне наибольшие месячные суммы сол­нечной радиации получает северное полуша­рие, особенно внутриконтинентальные тропи­ческие и субтропические области. В умерен­ных и полярных широтах количество радиации по широтам изменяется незначительно, так как уменьшение угла падения лучей компенсиру­ется продолжительностью солнечного сияния, вплоть до полярного дня за Северным поляр­ным кругом. В южном полушарии с увеличе­нием широты радиация быстро убывает и за Южным полярным кругом равна нулю.

В декабре южное полушарие получает боль­ше радиации, чем северное. В это время наи­большие месячные суммы солнечного тепла приходятся на пустыни Австралии и Калаха­ри; далее в умеренных широтах радиация по­степенно уменьшается, но в Антарктиде вновь растет и достигает таких же значений, как в тропиках. В северном полушарии с увеличе­нием широты она быстро убывает и за Се­верным полярным кругом отсутствует.

В целом наибольшая годовая амплитуда суммарной радиации наблюдается за полярны­ми кругами, особенно в Антарктиде, наимень­шая — в экваториальной зоне.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: