Коэффициент множественной ранговой корреляции (конкордации)

— число групп, которые ранжируются.

— число переменных.

— ранг -фактора у -единицы.

Значимость:

, то гипотеза об отсутствии связи отвергается.

В случае наличия связанных рангов:

Связи меры - количественные показатели тесноты и направления связи. Связи Меры конструируются таким образом, чтобы их значения изменялись в интервале [0; 1] или [-1; 1].

Значение коэффициента, равное нулю, может свидетельствовать как об отсутствии связи между переменными, так и о том, что выбранная модель не соответствует характеру изучаемой связи. Положительные значения коэффициента свидетельствует о прямой (положительной) либо о ненаправленной связи между переменными; отрицательные значения - об обратной (отрицательной) связи (Анализ корреляционный). Чем ближе значение коэффициента к 1 или -1, тем теснее связь. Значение, равное 1 или -1, свидетельствует о полной связи, позволяющей по значению одной переменной точно предсказывать значение другой переменной.

4. Парный регрессионный анализ. Модель парной линейной регрессии. Случайный член. Свойства случайных членов, условия Гаусса – Маркова.

Регрессионный анализ – позволяет оценить и проанализировать формулу зависимости одной переменной от других.

Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1, Х2, … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Регрессия [regression] — это зависимость среднего значения какой-либо случайной величины от некоторой другой величины или нескольких величин1. Следовательно, при регрессионной связи одному и тому же значению x величины X (в отличие от функциональной связи) могут соответствовать разные случайные значения величины Y. Распределение этих значений называется условным распределением Y при данном X = x.

Линейная парная модель

Уравнение регрессии:

y = β0 + β1x + ε

β1 – показывает, на сколько изменится значение зависимой переменной y при изменении объясняющей переменной x на единицу.

β0 – показывает среднее значение зависимой переменной y при нулевом значении объясняющей переменной x. Не всегда имеет экономический смысл. (компонент)

Проблема выбора линии заключаеться в том, что надо её максимально описать зависимость, чтобы по минимуму были отклонения.

Природа случайного члена регрессионной модели

1. Невключение объясняющих переменных

2. Неправильная функциональная спецификация модели

3. Случайность поведения рассматриваемых объектов

4. Ошибки измерения

Теорема Гаусса—Маркова: оценки по обычному методу наименьших квадратов являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными в том случае, если выполнены условия Гаусса—Маркова. С другой стороны, если условия Гаусса—Маркова не выполнены, то, вообще говоря, можно найти оценки, которые будут более эффективными по сравнению с оценками, полученными обычным методом наименьших квадратов. Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, случайный член должен удовлетворять четырем условиям, известным как условия Гаусса—Маркова.

1-е условие Гаусса—Маркова: E(Ut) = 0 для всех наблюдений. Первое условие состоит в том, что математическое ожидание случайного члена в любом наблюдении должно быть равно нулю. Иногда случайный член будет положительным, иногда отрицательным, но он не должен иметь систематического смещения ни в одном из двух возможных направлений. Vipolnjaetsja avtomaticeski,esli urava soderzit konstantu

2-е условие Гаусса—Маркова: pop. var (u) постоянна для всех наблюдений. Второе условие состоит в том, что дисперсия случайного члена должна быть постоянна для всех наблюдений. Иногда случайный член будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы он порождал большую ошибку в одних наблюдениях, чем в других. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайного члена. Если рассматриваемое условие не выполняется, то коэффициенты регрессии, найденные по обычному методу наименьших квадратов, будут неэффективны. Narushenie privodit k geteroskedasticnosti

3- е условие. Это условие предполагает отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях. Например, если случайный член велик и положителен в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что он будет большим и положительным в следующем наблюдении (или большим и отрицательным, или малым и положительным, или малым и отрицательным). Случайные члены должны быть абсолютно независимы друг от друга. Narushenie privodit k avtokorreljacii

4-е условие случайный член должен быть распределен независимо от объясняющих переменных В большинстве глав книги мы будем в сущности использовать более сильное предположение о том, что объясняющие переменные не являются стохастическими, т. е. не имеют случайной составляющей. Значение любой независимой переменной в каждом наблюдении должно считаться экзогенным, полностью определяемым внешними причинами, не учитываемыми в уравнении регрессии. Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю. Дело в том, что если случайный член и нормально распределен, то так же будут распределены и коэффициенты регрессии.

Предположение о нормальности основывается на центральной предельной теореме. В сущности, теорема утверждает, что если случайная величина является общим результатом взаимодействия большого числа других случайных величин, ни одна из которых не является доминирующей, то она будет иметь приблизительно нормальное распределение, даже если отдельные составляющие не имеют нормального распределения.

Условия Гауса-Маркова: мат.ожидание случайного члена в любом наблюдении должно быть равно 0;дисперсия случайного члена должна быть постоянна для всех наблюдений; случайные члены должны быть стат. независимы между собой; объясняющая переменная х есть величина неслучайная


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: