Ре условия Гаус Маркова

Для того чтобы анализ, основанный на методе наименьших квадратов давал лучшие результаты, необходимо выполнение условия Гас- Маркова для случайных составляющих:

1. М.О. случайного члена в любом наблюдении должно быть равно нулю: Е(εi)= 0

В некоторых ситуациях случайный член будет положительным иногда отрицательным, но он не должен иметь систематического смещения не в 1-ом из направлений.

Если уравнение регрессии включает постоянный член, то это условие выполняется автоматически. Т.к. роль константы состоит в том, чтобы

определить любую тенденцию, в которой не учитывают объясняющие переменные, включенные в уравнение регрессии.

2. Дисперсия случ. члена должна быть постоянна для всех наблюдений.

pop.var (Ei)- теоретическая вариация. (3.6)

pop.var(Ei) = ^2Ei -одинакова для всех i. (3.6) Если рассматриваемое условие не выполняется, то коэффициенты регрессии будут не эффективны.

3. Это условие предполагает отсутствие системной связи между значениями случайного члена в любых 2-ух наблюдениях.

(3.7) Т.е. если случ. член велик и положителен в олном наблюдении, это не обуславливает тенденцию к тому, что он будет большим и положительным в другом наблюдении. Случ. члены должны быть независемы друг от друга.

4. С.ч-н должен быть независимо распределен от объясняющей переменной. Значение независимой переменной в каждом наблюдении должно считаться полностью определенным внешними причинами, которые не учитываются в уравнении регрессии. Если условие выполняется, то теоретическая вариация между независимой переменной и случ. членом равна 0. Pop var (xi, εi)=0 (3.8)

18.Условия гомо и гетероскедастич-сти. Последствия гетероске-сти.

Первые два условия Гаус Маркова указывают, что случайные члены появ-ся на основе вероят-тных распреде-й, имеющих нолевое мат-кое ожидание и одну и ту же дисперсию. Их факти-кие знач-я иногда будут полож-ми, иногда отриц-ми, но но они не будут иметь сильных отклонений в любом наблю-ии, т.е вероят-ть того, что величина e примет какое-то значение, будет одинаковой для всех наблюде-й. Здесь имеет место условие гомоскедастич-ти:Ф(3.6)

одинакова для всех i. Вместе с тем возможно, что теори-ское распред-е случайного члена яв-ся разным для различ-х наблюд-й выборки. Это не означает, что слячайный член будет иметь особенно большие отклонения в конце выборки, но вероят-сть их получения будет высокая, т.е имеет место условие гетероскедаст-ти: Ф(3.6) не одинакова для всех.

Рис. 1- Различия м/д гомо и гетероскедас-тью.

На рис.2 показано, как будет выглядеть характерная диаграмма распределения ф-ции y(x), если имеет место гетероскедаст-сть. Рис.2-Влияние гетероскед-сти на распредел-е ф-ции y(x).

При отсутствии гетероскед-сти коэф-ты регрессии имеют наиболее низкую дисперсию среди несмещенных оценок. Если имеет место гетероскед- сть, то оценки метода наименьших квадратов будут не эфф-ны. Гетероскед-сть становится проблемой, когда значение переменных, входящих в уровни регрессии значительно различается в разных наблюдениях. Если истинная зависимость описывается уравнением прямой, то при нем экон-ие переменные меняют свой масштаб одновременно,то изменение значений, не включаемых переменных и ошибки измерения, влияя совместно на случайный член делает его сравнительно малым при больших X и Y. Гетероске- сть может также появляться при анализе временных рядов.

19.Обнаружение гетероскедастичности.Тест ранговой корреляции Спирмена, тест Глейзера.

Проявление проблем гетероскед-сти можно предвидеть основываясь на знаниях характера данных. В этих случаях можно предпринимать действия на этапе спецификации модели регрессии. Это позволит уменьшить или устранить необходимость формальной проверки. В настоящее время используются следующие виды тестов гетероскед-сти, в которых делается предположение о наличие зависимости между дисперсией случайного члена и величиной объясняющей переменной: 1)Тест ранговой корреляции Спирмена.

При его выполнении предполагается, что дисперсия случайного члена будет либо увеличиваться, либо уменьшаться по мере увеличения X и поэтому в регрессии, оцениваемой с помощью метода наименьших квадратов абсолютные величины остатков и значение X будут коррелированны. Данные по X и остатки упорядочиваются, а затем определяется коэффициент ранговой корреляции: Ф(3.9),

Где Дi- разность между рангом X и рангом е, е- остатки(отклонение) фактических значений Y от теоретических значений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: